Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

    Sun rises over a farm with neat rows of crops
    Breaking News
    May 27, 2025

    Planning for a climate-resilient agricultural future

    Black and white photo of Carnegie Science's former Desert Laboratory in Arizona
    Breaking News
    May 07, 2025

    The Desert Laboratory: Carnegie Science's Pioneering Role in American Ecology

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Distinguishing deep lower mantle heterogeneities and resolving their physical and chemical properties are challenging due to the difficulty in achieving severe high-temperature and high-pressure conditions simultaneously in mineral experiments. Deep-seated mantle plumes bring these heterogeneities to the Earth's surface, therefore providing a unique insight into the Earth's deep interior. Here, we link the surface temperature fluctuation of mantle plume to the properties of deep-mantle heterogeneities via three-dimensional geodynamic modeling. Our results show that high-viscosity primordial mantle materials significantly increase the surface plume temperature due to their excessive viscous heating, whereas high-density oceanic crust slightly reduces it. Give some estimates for the maximum plume fluctuation temperature through time, the survival of scattered primordial blobs with a high viscosity contrast of -10-50 times in the deep-mantle reservoir is required. The temperature variations of the thermochemical mantle plume likely control the observed multiple volcanic episodes of large igneous provinces and periodic changes of volcanic flux along hotspot tracks.& COPY; 2023 Elsevier B.V. All rights reserved.
open_in_new
Abstract
Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability(1). However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program(2,3) found a spectral absorption feature at 4.05 mu m arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 M-J) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. (4)). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes(5,6). Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-mu m spectral feature identified by JWST transmission observations(7) with NIRSpec PRISM (2.7s)(8) and G395H (4.5s)(9). SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10x solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.
open_in_new
Abstract
Photoevaporation is a potential explanation for several features within exoplanet demographics. Atmospheric escape observed in young Neptune-sized exoplanets can provide insight into and characterize which mechanisms drive this evolution and at what times they dominate. AU Mic b is one such exoplanet, slightly larger than Neptune (4.19 R (& OPLUS;)). It closely orbits a 23 Myr pre-main-sequence M dwarf with an orbital period of 8.46 days. We obtained two visits of AU Mic b at Ly & alpha; with Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph. One flare within the first HST visit is characterized and removed from our search for a planetary transit. We present a nondetection in our first visit, followed by the detection of escaping neutral hydrogen ahead of the planet in our second visit. The outflow absorbed & SIM;30% of the star's Ly & alpha; blue wing 2.5 hr before the planet's white-light transit. We estimate that the highest-velocity escaping material has a column density of 10(13.96) cm(-2) and is moving 61.26 km s(-1) away from the host star. AU Mic b's large high-energy irradiation could photoionize its escaping neutral hydrogen in 44 minutes, rendering it temporarily unobservable. Our time-variable Ly & alpha; transit ahead of AU Mic b could also be explained by an intermediate stellar wind strength from AU Mic that shapes the escaping material into a leading tail. Future Ly & alpha; observations of this system will confirm and characterize the unique variable nature of its Ly & alpha; transit, which, combined with modeling, will tune the importance of stellar wind and photoionization.
open_in_new
Abstract
Stishovite is a key mineral for understanding the deep Earth water cycle because of its potential as a main carrier for water into the transition zone and lower mantle. During subduction-related metamorphism of basaltic oceanic crust, stishovite stabilizes at 8-9 GPa and comprises 10-25 vol% of the bulk mineralogy, with some experimental studies indicating that stishovite can accommodate 3.5 wt% H2O or more in the transition zone and upper lower mantle. This large water solubility has been explained by a hydrogarnet substitution mechanism (1Si(4+) & LRARR; 4H(+)) and/or the incorporation of interstitial molecular water. To investigate water speciation and hydrogen isotope behavior, we synthesized partially deuterated hydrous stishovite at 9 GPa and 450 & DEG;C in a multi-anvil press (MA). The hydrous stishovite contains on average 1.69 & PLUSMN; 0.05 wt% water, which is consistent with earlier MA studies but is significantly lower than the 3.5 wt% reported from in situ diamond anvil cell (DAC) studies made at higher pressures and temperatures. H-1 MAS NMR spinning sideband characteristics suggest a high abundance of interstitial molecular water in hydrous stishovite, while the presence of a hydrogarnet defect cannot be ruled out. Unit-cell volumes and deuterium enrichment in the quenched hydrous stishovite indicate that similar to 45% of the water is lost from the stishovite upon quenching and decompression of the experiment, consistent with a higher solubility. This implies that the pristine water contents of a P-T-fO(2) equilibrated hydrous stishovite cannot be quenched to 1 atm and room temperature from classical MA experiments. We further present a capillary-based recovery method for fluid from experimental capsules, allowing direct determination of the D/H ratio of the experimental fluid and indirect determination of the hydrous stishovite. Using Rayleigh modeling to account for the quench-related water loss, we find that, at 450 & DEG;C and 9 GPa, deuterium is 3.5-4.5 times enriched in hydrous stishovite relative to coexisting aqueous fluid. This is opposite of what is commonly observed for mineral-fluid pairs above 300 & DEG;C, rendering hydrous stishovite a potential sink for deuterium and decreasing the D/H ratio of coexisting aqueous fluids. Partial decomposition (30-60%) of hydrous stishovite during mantle upwelling and production of primary basaltic melts could be accompanied by high-temperature D/H fractionation, decreasing the hydrogen isotope composition of such melts towards "mantle-like" delta D values between -75 and -220 parts per thousand.
open_in_new
Abstract
Simple Summary The success of coral reefs is underpinned by the symbiosis between corals and their dinoflagellate symbionts. Crucially, metabolic interactions between the two partners support coral metabolism and survival, although these can be influenced by symbiont identity and inter-partner compatibility. Here, we measured how symbiont identity influences the release of biogenic volatile organic compounds (BVOCs) via the symbiosis, and related this to concurrent shifts in the host microbiome; BVOCs are end-products of metabolism and important biological signal molecules. We used the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate symbiosis, when either symbiont-free, populated with its native symbiont, or populated with a non-native symbiont. We detected 142 BVOCs across all treatments. The volatile profiles of symbiont-free anemones and those containing the native symbiont were distinct, while the volatile profile of anemones containing the non-native symbiont shared characteristics with both. The symbiotic state also caused a change in the host microbiome, but this did not explain the changes seen in BVOC release. These findings contribute to our understanding of how corals may respond to climate change should they acquire novel symbionts post-bleaching. Furthermore, we provide a platform for future studies of the metabolic and/or signalling roles of BVOCs in this important symbiosis. The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D.
open_in_new
Abstract
Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.
open_in_new
Abstract
Climate change, especially in the form of precipitation and temperature changes, can alter the transformation and delivery of nitrogen on the land surface and to aquatic systems, impacting the trophic states of downstream water bodies. While the expected impacts of changes in precipitation have been explored, a quantitative understanding of the impact of temperature on nitrogen loading is lacking at landscape scales. Here, using several decades of nitrogen loading observations, we quantify how individual and combined future changes in precipitation and temperature will affect riverine nitrogen loading. We find that, contrary to recent decades, rising temperatures are likely to offset or even reverse previously reported impacts of future increases in total and extreme precipitation on nitrogen runoff across the majority of the contiguous United States. These findings highlight the multifaceted impacts of climate change on the global nitrogen cycle.
open_in_new
Abstract
The Mars 2020 Perseverance rover landed in Jezero crater on 18 February 2021. After a 100-sol period of commissioning and the Ingenuity Helicopter technology demonstration, Perseverance began its first science campaign to explore the enigmatic Jezero crater floor, whose igneous or sedimentary origins have been much debated in the scientific community. This paper describes the campaign plan developed to explore the crater floor's Maaz and Seitah formations and summarizes the results of the campaign between sols 100-379. By the end of the campaign, Perseverance had traversed more than 5 km, created seven abrasion patches, and sealed nine samples and a witness tube. Analysis of remote and proximity science observations show that the Maaz and Seitah formations are igneous in origin and composed of five and two geologic members, respectively. The Seitah formation represents the olivine-rich cumulate formed from differentiation of a slowly cooling melt or magma body, and the Maaz formation likely represents a separate series of lava flows emplaced after Seitah. The Maaz and Seitah rocks also preserve evidence of multiple episodes of aqueous alteration in secondary minerals like carbonate, Fe/Mg phyllosilicates, sulfates, and perchlorate, and surficial coatings. Post-emplacement processes tilted the rocks near the Maaz-Seitah contact and substantial erosion modified the crater floor rocks to their present-day expressions. Results from this crater floor campaign, including those obtained upon return of the collected samples, will help to build the geologic history of events that occurred in Jezero crater and provide time constraints on the formation of the Jezero delta.
open_in_new
Abstract
We report the discovery of six ultra-faint Milky Way satellites identified through matched-filter searches conducted using Dark Energy Camera (DECam) data processed as part of the second data release of the DECam Local Volume Exploration (DELVE) survey. Leveraging deep Gemini/GMOS-N imaging (for four candidates) as well as follow-up DECam imaging (for two candidates), we characterize the morphologies and stellar populations of these systems. We find that these candidates all share faint absolute magnitudes (M (V) & GE; -3.2 mag) and old, metal-poor stellar populations (& tau; > 10 Gyr, [Fe/H] < -1.4 dex). Three of these systems are more extended (r (1/2) > 15 pc), while the other three are compact (r (1/2) < 10 pc). From these properties, we infer that the former three systems (Bootes V, Leo Minor I, and Virgo II) are consistent with ultra-faint dwarf galaxy classifications, whereas the latter three (DELVE 3, DELVE 4, and DELVE 5) are likely ultra-faint star clusters. Using data from the Gaia satellite, we confidently measure the proper motion of Bootes V, Leo Minor I, and DELVE 4, and tentatively detect a proper-motion signal from DELVE 3 and DELVE 5; no signal is detected for Virgo II. We use these measurements to explore possible associations between the newly discovered systems and the Sagittarius dwarf spheroidal, the Magellanic Clouds, and the Vast Polar Structure, finding several plausible associations. Our results offer a preview of the numerous ultra-faint stellar systems that will soon be discovered by the Vera C. Rubin Observatory and highlight the challenges of classifying the faintest stellar systems.
open_in_new
Abstract
We present photometric and spectroscopic observations and analysis of SN 2021bxu (ATLAS21dov), a low-luminosity, fastevolving Type IIb supernova (SN). SN 2021bxu is unique, showing a large initial decline in brightness followed by a short plateau phase. With M-r = -15.93 +/- 0.16 mag during the plateau, it is at the lower end of the luminosity distribution of stripped-envelope supernovae (SE-SNe) and shows a distinct similar to 10 d plateau not caused by H- or He-recombination. SN 2021bxu shows line velocities which are at least similar to 1500 km s(-1) slower than typical SE-SNe. It is photometrically and spectroscopically similar to Type IIb SNe during the photospheric phases of evolution, with similarities to Ca-rich IIb SNe. We find that the bolometric light curve is best described by a composite model of shock interaction between the ejecta and an envelope of extended material, combined with a typical SN IIb powered by the radioactive decay of Ni-56. The best-fitting parameters for SN 2021bxu include a Ni-56 mass of M-Ni = 0.029(-0.005)+M-0.004(circle dot), an ejecta mass of M-ej = 0.61(-0.05)(+0.06)M(circle dot), and an ejecta kinetic energy of K-ej = 8.8(-1.0)(+1.1) x10(49) erg. From the fits to the properties of the extended material of Ca-rich IIb SNe we find a trend of decreasing envelope radius with increasing envelope mass. SN 2021bxu has M-Ni on the low end compared to SE-SNe and Ca-rich SNe in the literature, demonstrating that SN 2021bxu-like events are rare explosions in extreme areas of parameter space. The progenitor of SN 2021bxu is likely a low-mass He star with an extended envelope.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 190
  • Page 191
  • Page 192
  • Page 193
  • Current page 194
  • Page 195
  • Page 196
  • Page 197
  • Page 198
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025