Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The addition polymerization of charged monomers like C C2- and C N- is scarcely seen at ambient conditions but can progress under external pressure with their conductivity significantly enhanced, which expands the research field of polymer science to inorganic salts. The reaction pressures of transition metal cyanides like Prussian blue and K3Fe(CN)(6) are much lower than that of alkali cyanides. To figure out the effect of the transition metal on the reaction, the crystal structure and electronic structure of K3Fe(CN)(6) under external pressure are investigated by in situ neutron diffraction, in situ X-ray absorption fine structure (XAFS), and neutron pair distribution functions (PDF) up to similar to 15 GPa. The cyanide anions react following a sequence of approaching-bonding-stabilizing. The Fe(III) brings the cyanides closer which makes the bonding progress at a low pressure (2-4 GPa). At similar to 8 GPa, an electron transfers from the CN to Fe(III), reduces the charge density on cyanide ions, and stabilizes the reaction product of cyanide. From this study we can conclude that bringing the monomers closer and reducing their charge density are two effective routes to decrease the reaction pressure, which is important for designing novel pressure induced conductor and excellent electrode materials.
View Full Publication open_in_new
Abstract
Pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal-carbon network composite, thus providing a new route to synthesize inorganic/organic conductors with tunable composition and properties. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li3Fe(CN)(6) at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutron diffraction and Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. The conductivity of the polymer is above 10(-3) S.cm(-1), which reaches the range of conductive polymers. This investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances.
View Full Publication open_in_new
Abstract
Pressure-induced polymerization (PIP) of aromatic molecules can generate saturated carbon nanostructures. As a strongly interacted pi-pi stacking unit, the C6H6-C6F6 adduct is widely applied in supramolecular chemistry, and it provides a good preorganization for the PIP. Here we investigated the structural variation of C6H6-C6F6 cocrystal and the subsequent PIP process under high pressure. Four new molecular-complex phases V, VI, VII, and VIII have been identified and characterized by the in situ Raman, IR, synchrotron X-ray, and neutron diffraction. The phase V is different from the phases observed at low temperature, which has a tilted column structure. Phases VI and VII have a structure similar to phase V. Phase VIII polymerizes irreversibly upon compression above 25 GPa without any catalyst, producing sp(3)(CH/F)(n) materials. The pi-pi interaction is still dominant below 0.5 GPa but is most likely to be overstepped under further compression, which is important for discussing the supramolecular phase transition and the polymerization process.
View Full Publication open_in_new
Abstract
Li2C2 has the highest theoretical capacity (1400 mAh.g(-1)) as the electrode material for Li-ion battery, but suffers from low conductivity. Here we found that under external pressure its conductivity was irreversibly enhanced by 10(9)-fold. To explain that, we performed X-ray diffraction, Raman, IR, gas chromatography-mass spectrometry, and theoretical investigations under external pressure. We found that the C-2(2-) anions approached to each other and polymerized upon compression, which is responsible for the irreversible enhancement of conductivity. The polymer has a ribbon structure and disproportionates into Li3C4 (Li2-0.5C2) ribbon structure, Li6C3 (Li propenide) and Li4C3 (Li allenide) upon decompression, implying that the carbon skeletal is highly electrochemically active. Our work reported polymerized Li2C2 for the first time, demonstrated that applying pressure is an effective method to prepare novel Li-C frameworks, and hence shed light on the search for novel carbon-based electrode materials.
View Full Publication open_in_new
Abstract
The structure of communities is influenced by many ecological and evolutionary processes, but the way this manifests in classic biodiversity patterns often remains unclear. Here, we aim to distinguish the ecological footprint of selection - through competition or environmental filtering - from that of neutral processes that are invariant to species identity. We build on existing Massive Eco-evolutionary Synthesis Simulations (MESS), which uses information from three biodiversity axes - species abundances, genetic diversity, and trait variation - to distinguish between mechanistic processes. In order to correctly detect and characterise competition, we add a new and more realistic form of competition that explicitly compares the traits of each pair of individuals. Our results are qualitatively different to those of previous work, in which competition is based on the distance of each individual's trait to the community mean. We find that our new form of competition is easier to identify in empirical data compared to the alternatives. This is especially true when trait data are available and used in the inference procedure. Our findings hint that signatures in empirical data previously attributed to neutrality may in fact be the result of pairwise-acting selective forces. We conclude that gathering more different types of data, together with more advanced mechanistic models and inference, as done here, could be the key to unravelling the mechanisms of community assembly.
View Full Publication open_in_new
Abstract
Background MacArthur and Wilson's theory of island biogeography has been a foundation for obtaining testable predictions from models of community assembly and for developing models that integrate across scales and disciplines. Historically, however, these developments have focused on integration across ecological and macroevolutionary scales and on predicting patterns of species richness, abundance distributions, trait data and/or phylogenies. The distribution of genetic variation across species within a community is an emerging pattern that contains signatures of past population histories, which might provide an historical lens for the study of contemporary communities. As intraspecific genetic diversity data become increasingly available at the scale of entire communities, there is an opportunity to integrate microevolutionary processes into our models, moving towards development of a genetic theory of island biogeography. Motivation/goal We aim to promote the development of process-based biodiversity models that predict community genetic diversity patterns together with other community-scale patterns. To this end, we review models of ecological, microevolutionary and macroevolutionary processes that are best suited to the creation of unified models, and the patterns that these predict. We then discuss ongoing and potential future efforts to unify models operating at different organizational levels, with the goal of predicting multidimensional community-scale data including a genetic component. Main conclusions Our review of the literature shows that despite recent efforts, further methodological developments are needed, not only to incorporate the genetic component into existing island biogeography models, but also to unify processes across scales of biological organization. To catalyse these developments, we outline two potential ways forward, adopting either a top-down or a bottom-up approach. Finally, we highlight key ecological and evolutionary questions that might be addressed by unified models including a genetic component and establish hypotheses about how processes across scales might impact patterns of community genetic diversity.
View Full Publication open_in_new
Abstract
Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integument cell length. The det2 mutant also showed delay in embryo development, with reduction in both the size and number of embryo cells. Pollination of det2 flowers with wild-type pollen yielded seeds of normal size but still shortened shape, indicating that the BR produced by the zygotic embryo and endosperm is sufficient for increasing seed volume but not for seed elongation, which apparently requires BR produced from maternal tissues. BR activates expression of SHORT HYPOCOTYL UNDER BLUE1, MINISEED3, and HAIKU2, which are known positive regulators of seed size, but represses APETALA2 and AUXIN RESPONSE FACTOR2, which are negative regulators of seed size. These genes are bound in vivo by the BR-activated transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), and they are known to influence specific processes of integument, endosperm, and embryo development. Our results demonstrate that BR regulates seed size and seed shape by transcriptionally modulating specific seed developmental pathways.
View Full Publication open_in_new
Abstract
Quasars represent a brief phase in the life cycle of most massive galaxies, but the evolutionary connection between central black holes and their host galaxies remains unclear. While quasars are active and shining brighter than the Compton-limit luminosity, their radiation heats the surrounding medium to the Compton temperature, forming Compton spheres extending to the Stromgren radius of Fe26+/He2+. After the quasars shut off, their "afterglow" can be detected through three signatures: (1) an extended X-ray envelope, with a characteristic temperature of similar to 3 x 10(7) (2) Ly alpha and Ly beta lines and the K edge of Fe26+, and (3) nebulosity from hydrogen and helium recombination emission lines. We discuss the possibility of detecting these signatures using Chandra, the planned X-Ray Evolving Universe Spectroscopy mission, and ground-based optical telescopes. The luminosity and size of quasar afterglows can be used to constrain the lifetime of quasars.
View Full Publication open_in_new
Abstract
In the past decade, the group V-VI compounds have been widely investigated due to their excellent properties and applications. It is now accepted that diverse stoichiometry can yield new compounds with unanticipated properties, uncovering potentially new physicochemical mechanisms. However, in this group, aside from the conventional A(2)B(3)-type, no other energetically stable stoichiometry has been reported yet. Here, we report that Bi2S3 is unstable and decomposes into stoichiometric BiS2 and BiS with different Bi valence states upon compression. Encouragingly, we successfully synthesized the predicted BiS2 phase and thus, confirmed its existence. Our current calculations reveal that the found BiS2 phase is a semimetal, associated with the increased concentration of nonmetallic S. The present results represent the first counterintuitive stable stoichiometry of group V-VI and provide a good example in designing and synthesizing new compounds under compression.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 192
  • Page 193
  • Page 194
  • Page 195
  • Current page 196
  • Page 197
  • Page 198
  • Page 199
  • Page 200
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025