Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Hayabusa2 spacecraft explored asteroid Ryugu and brought its surface materials to Earth. Ryugu samples resemble Ivuna-type (CI) chondrites-the most chemically primitive meteorites-and contain secondary phyllosilicates and carbonates, which are indicative of aqueous alteration. Understanding the conditions (such as temperature, redox state and fluid composition) during aqueous alteration is crucial to elucidating how Ryugu evolved to its present state, but little is known about the temporal changes in these conditions. Here we show that calcium carbonate (calcite) grains in Ryugu and Ivuna samples have variable O-18/O-16 and C-13/C-12 ratios that are, respectively, 24-46 & PTSTHOUSND; and 65-108 & PTSTHOUSND; greater than terrestrial standard values, whereas those of calcium-magnesium carbonate (dolomite) grains are much more homogeneous, ranging within 31-36 & PTSTHOUSND; for oxygen and 67-75 & PTSTHOUSND; for carbon. We infer that the calcite precipitated first over a wide range of temperatures and oxygen partial pressures, and that the proportion of gaseous CO2/CO/CH4 molecules changed temporally. By contrast, the dolomite formed later in a more oxygen-rich and thus CO2-dominated environment when the system was approaching equilibrium. The characteristic isotopic compositions of secondary carbonates in Ryugu and Ivuna are not observed for other hydrous meteorites, suggesting a unique evolutionary pathway for their parent asteroid(s).
View Full Publication open_in_new
Abstract
Protein O-glycosylation is a nutrient-signaling mechanism that plays essential roles in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) catalyze posttranslational modifications of hundreds of intracellular proteins by O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation and loss of both SPY and SEC causes embryo lethality in Arabidopsis. Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a SPY O-fucosyltransferase inhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and caused phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defect in sugar-dependent growth. By contrast, SOFTI had no visible effect on the spy mutant. Similarly, SOFTI inhibited sugar-dependent growth of tomato seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor and a useful chemical tool for functional studies of O-fucosylation and potentially for agricultural management.
View Full Publication open_in_new
Abstract
The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites(1) and at Gale crater, Mars(2-4). Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources(1,5,6). Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Maaz and Seitah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.
View Full Publication open_in_new
Abstract
The establishment and maintenance of the symbiosis between a cnidarian host and its dinoflagellate symbionts is central to the success of coral reefs. To explore the metabolite production underlying this symbiosis, we focused on a group of low molecular weight secondary metabolites, biogenic volatile organic compounds (BVOCs). BVOCs are released from an organism or environment, and can be collected in the gas phase, allowing non-invasive analysis of an organism's metabolism (i.e. 'volatilomics'). We characterised volatile profiles of the sea anemone Aiptasia (Exaiptasia diaphana), a model system for cnidarian-dinoflagellate symbiosis, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. We compared volatile profiles between: (1) symbiotic anemones containing their native symbiont, Breviolum minutum; (2) aposymbiotic anemones; and (3) cultured isolates of B. minutum. Overall, 152 BVOCs were detected, and classified into 14 groups based on their chemical structure, the most numerous groups being alkanes and aromatic compounds. A total of 53 BVOCs were differentially abundant between aposymbiotic anemones and B. minutum cultures; 13 between aposymbiotic and symbiotic anemones; and 60 between symbiotic anemones and cultures of B. minutum. More BVOCs were differentially abundant between cultured and symbiotic dinoflagellates than between aposymbiotic and symbiotic anemones, suggesting that symbiosis may modify symbiont physiology more than host physiology. This is the first volatilome analysis of the Aiptasia model system and provides a foundation from which to explore how BVOC production is perturbed under environmental stress, and ultimately the role they play in this important symbiosis.
View Full Publication open_in_new
Abstract
Bacterial species often undergo rampant recombination yet maintain cohesive genomic identity. Ecological differences can generate recombination barriers between species and sustain genomic clusters in the short term. But can these forces prevent genomic mixing during long-term coevolution? Cyanobacteria in Yellowstone hot springs comprise several diverse species that have coevolved for hundreds of thousands of years, providing a rare natural experiment. By analyzing more than 300 single-cell genomes, we show that despite each species forming a distinct genomic cluster, much of the diversity within species is the result of hybridization driven by selection, which has mixed their ancestral genotypes. This widespread mixing is contrary to the prevailing view that ecological barriers can maintain cohesive bacterial species and highlights the importance of hybridization as a source of genomic diversity.
View Full Publication open_in_new
Abstract
The evolution of eukaryotic life was predicated on the development of organelles such as mitochondria and plastids. During this complex process of organellogenesis, the host cell and the engulfed prokaryote became genetically codependent, with the integration of genes from the endosymbiont into the host nuclear genome and subsequent gene loss from the endosymbiont. This process required that horizontally transferred genes become active and properly regulated despite inherent differences in genetic features between donor (endosymbiont) and recipient (host). Although this genetic reorganization is considered critical for early stages of organellogenesis, we have little knowledge about the mechanisms governing this process. The photosynthetic amoeba Paulinella micropora offers a unique opportunity to study early evolutionary events associated with organellogenesis and primary endosymbiosis. This amoeba harbors a "chromatophore," a nascent photosynthetic organelle derived from a relatively recent cyanobacterial association (similar to 120 million years ago) that is independent of the evolution of primary plastids in plants (initiated similar to 1.5 billion years ago). Analysis of the genome and transcriptome of Paulinella revealed that retrotransposition of endosymbiont-derived nuclear genes was critical for their domestication in the host. These retrocopied genes involved in photoprotection in cyanobacteria became expanded gene families and were "rewired," acquiring light-responsive regulatory elements that function in the host. The establishment of host control of endosymbiont-derived genes likely enabled the cell to withstand photo-oxidative stress generated by oxygenic photosynthesis in the nascent organelle. These results provide insights into the genetic mechanisms and evolutionary pressures that facilitated the metabolic integration of the host-endosymbiont association and sustained the evolution of a photosynthetic organelle.
View Full Publication open_in_new
Abstract
The chemical industry is responsible for about 5% of global CO2 emissions and is key to achieving net-zero targets. Decarbonizing this industry, nevertheless, faces particular challenges given the widespread use of carbon-rich raw materials, the need for high-temperature heat, and the complex global value chains. Multiple technology routes are now available for producing chemicals with net-zero CO2 emissions based on biomass, recycling, and carbon capture, utilization, and storage. However, the extent to which these routes are viable with respect to local availability of energy and natural resources remains unclear. In this review, we compare net-zero routes by quantifying their energy, land, and water requirements and the corresponding induced resource scarcity at the country level and further discuss the technical and environmental viability of a net-zero chemical industry. We find that a net-zero chemical industry will require location-specific inte-grated solutions that combine net-zero routes with circular approaches and demand-side measures and might result in a reshaping of the global chemicals trade.
View Full Publication open_in_new
Abstract
Human-induced abiotic global environmental changes (GECs) and the spread of non-native invasive species are rapidly altering ecosystems. Understanding the relative and interactive effects of invasion and GECs is critical for informing ecosystem adaptation and management, but this information has not been synthesized. We conducted a meta-analysis to investigate effects of invasions, GECs, and their combined influences on native ecosystems. We found 458 cases from 95 published studies that reported individual and combined effects of invasions and a GEC stressor, which was most commonly warming, drought, or nitrogen addition. We calculated standardized effect sizes (Hedges' d) for individual and combined treatments and classified interactions as additive (sum of individual treatment effects), antagonistic (smaller than expected), or synergistic (outside the expected range). The ecological effects of GECs varied, with detrimental effects more likely with drought than the other GECs. Invasions were more strongly detrimental, on average, than GECs. Invasion and GEC interactions were mostly antagonistic, but synergistic interactions occurred in >25% of cases and mostly led to more detrimental outcomes for ecosystems. While interactive effects were most often smaller than expected from individual invasion and GEC effects, synergisms were not rare and occurred across ecological responses from the individual to the ecosystem scale. Overall, interactions between invasions and GECs were typically no worse than the effects of invasions alone, highlighting the importance of managing invasions locally as a crucial step toward reducing harm from multiple global changes.
View Full Publication open_in_new
Abstract
Context. Carbon-enhanced metal-poor (CEMP) stars ([C/Fe] > 0.7) are known to exist in large numbers at low metallicity in the Milky Way halo and are important tracers of early Galactic chemical evolution. However, very few stars of this kind have been identified in the classical dwarf spheroidal (dSph) galaxies, and detailed abundances, including neutron-capture element abundances, have only been reported for 13 stars.Aims. We aim to derive detailed abundances of six CEMP stars identified in the Carina dSph and compare the abundances to CEMP stars in other dSph galaxies and the Milky Way halo. This is the largest sample of CEMP stars in a dSph galaxy analysed to date.Methods. One-dimensional local thermodynamic equilibrium (LTE) elemental abundances are derived via equivalent width and spectral synthesis using high-resolution spectra of the six stars obtained with the MIKE spectrograph at Las Campanas Observatory.Results. We derived abundances or upper limits for up to 27 elements from C to Os in the six stars. Our analysis reveals one of the stars to be a CEMP-no star with very low neutron-capture element abundances. In contrast, the other five stars all show enhancements in neutron-capture elements in addition to their carbon enhancement, classifying them as CEMP-s and -r/s stars. The six stars have similar a and iron-peak element abundances to other stars in Carina, except for the CEMP-no star, which shows enhancement in Na, Mg, and Si. We explored the absolute carbon abundances (A(C)) of CEMP stars in dSph galaxies and find similar behaviour to that seen for Milky Way halo CEMP stars, but highlight that CEMP-r/s stars primarily have very high A(C) values. We also compared the neutron-capture element abundances of the CEMP-r/s stars in our sample to recent i-process yields, which provide a good match to the derived abundances.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 186
  • Page 187
  • Page 188
  • Page 189
  • Current page 190
  • Page 191
  • Page 192
  • Page 193
  • Page 194
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025