Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home
  • Our Community
  • Yu Zhao

Yu
Zhao

Astronomy & Astrophysics

Yu Zhao is a Ph.D. student at the Carnegie Observatories.

Yu Zhao headshot

Ph.D. Student
Pasadena, CA

  • Observatories
email Email Me
Abstract
Photomorphogenesis is a light-dependent plant growth and development program. As the core regulator of photomorphogenesis, ELONGATED HYPOCOTYL 5 (HY5) is affected by dynamic changes in its transcriptional activity and protein stability; however, little is known about the mediators of these processes. Here, we identified PHOTOREGULATORY PROTEIN KINASE 1 (PPK1), which interacts with and phosphorylates HY5 in Arabidopsis, as one such mediator. The phosphorylation of HY5 by PPK1 is essential to establish high-affinity binding with B-BOX PROTEIN 24 (BBX24) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which inhibit the transcriptional activity and promote the degradation of HY5, respectively. As such, PPKs regulate not only the binding of HY5 to its target genes under light conditions but also HY5 degradation when plants are transferred from light to dark. Our data identify a PPK-mediated phospho-code on HY5 that integrates the molecular mechanisms underlying the regulation of HY5 to precisely control plant photomorphogenesis.
View Full Publication open_in_new
Abstract
Photomorphogenesis is a light-dependent plant growth and development program. As the core regulator of photomorphogenesis, ELONGATED HYPOCOTYL 5 (HY5) is affected by dynamic changes in its transcriptional activity and protein stability; however, little is known about the mediators of these processes. Here, we identified PHOTOREGULATORY PROTEIN KINASE 1 (PPK1), which interacts with and phosphorylates HY5 in Arabidopsis, as one such mediator. The phosphorylation of HY5 by PPK1 is essential to establish high-affinity binding with B-BOX PROTEIN 24 (BBX24) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which inhibit the transcriptional activity and promote the degradation of HY5, respectively. As such, PPKs regulate not only the binding of HY5 to its target genes under light conditions but also HY5 degradation when plants are transferred from light to dark. Our data identify a PPK-mediated phospho-code on HY5 that integrates the molecular mechanisms underlying the regulation of HY5 to precisely control plant photomorphogenesis.
View Full Publication open_in_new
Abstract
Context. Long-period transiting exoplanets bridge the gap between the bulk of transit- and Doppler-based exoplanet discoveries, providing key insights into the formation and evolution of planetary systems. The wider separation between these planets and their host stars results in the exoplanets typically experiencing less radiation from their host stars; hence, they should maintain more of their original atmospheres, which can be probed during transit via transmission spectroscopy. Although the known population of long-period transiting exoplanets is relatively sparse, surveys performed by the Transiting Exoplanet Survey Satellite (TESS) and the Next Generation Transit Survey (NGTS) are now discovering new exoplanets to fill in this crucial region of the exoplanetary parameter space.
View Full Publication open_in_new
Abstract
The use of magnetic susceptibility (& chi;) as a means of assessing heavy metal pollution in soils has been explored by researchers, yielding varying results in terms of the correlations between & chi; with heavy metals. The efficacy of & chi; as an indicator of soil heavy metal pollution remains a topic of debate. This study aims to elucidate the interrelationships between & chi;, iron oxides, and heavy metals in soil through the application of a modified 5-step sequential extraction procedure (SEP), and to identify an effective approach for assessing metal concentrations in soil using magnetic susceptibility measurements. The soil samples were collected from a typical alluvial island in the lower Yangtze River, China, and a total of 6 forms (exchangeable and acid soluble fraction, easily reducible fraction, oxidizable fraction, amorphous iron oxide, crystallized iron oxyhydroxides and residual fraction) were partitioned and their heavy metal concentrations and & chi; were analyzed. The results show that crystalline Fe oxyhydroxides and residual fractions are the two uppermost fractions of heavy metals. By combining the fractionation of elements with the variation of & chi; of the soil during the processing of SEP, it was inferred that the external input of Fe, Pb, Cr and Cd in the soil likely originated from the vicinal steel production. The correlation analysis revealed a significant correlation between heavy metal concentrations and & chi; in the residual fraction, whereas no significant correlations were observed between the concentrations of heavy metals and & chi; in the bulk soil samples. It is recommended that the evaluation of heavy metal contamination in the soil neighboring industrial sites can be conducted via magnetic susceptibility measurements subsequent to the elimination of crystalline iron oxyhydroxides.
View Full Publication open_in_new
Abstract
The contributions of natural versus anthropogenic forces on temporal changes of metals in the soil of the Yangtze River delta region were successfully quantified by combining repeated soil sampling, geostatistics and the modified principal component scores and multiple linear regressions approach. The findings show that the mean concentrations of Cu, Cd, As, Hg, Cr and Ni generally exhibited a decrease trend from 2010 to 2020. The decline of soil Hg was most outstanding, decreased by 20 % as a whole. The result of the modified principal component scores and multiple linear regressions approach suggests that the decrease of Hg content was predominately driven by the geochemical processes, with 48 % contribution. The mean soil Pb concentration increased by 40 % from 2010 to 2020. Approximately 76 % of the Pb change was attributed to the strengthened development of Pb-containing battery industry in the south part of the Yangtze River delta region. The Pb battery industry development also contributed 48 % of the change of Cd. The anthropogenic activities involving Cu, Zn or fossil fuel consumption contributed 32-35 % of the changes of As, Cu and Zn concentrations in the soil, and the steel industries contributed 82 % of Cr and 60 % of Ni changes, respectively.
View Full Publication open_in_new

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025