Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Experiments accessing extreme conditions at x-ray free electron lasers (XFELs) involve rapidly evolving conditions of temperature. Here, we report time-resolved, direct measurements of temperature using spectral streaked optical pyrometry of x-ray and optical laser-heated states at the High Energy Density instrument of the European XFEL. This collection of typical experiments, coupled with numerical models, outlines the reliability, precision, and meaning of time dependent temperature measurements using optical emission at XFEL sources. Dynamic temperatures above 1500 K are measured continuously from spectrally- and temporally-resolved thermal emission at 450-850 nm, with time resolution down to 10-100 ns for 1-200 mu s streak camera windows, using single shot and integrated modes. Targets include zero-pressure foils free-standing in air and in vacuo, and high-pressure samples compressed in diamond anvil cell multi-layer targets. Radiation sources used are 20-fs hard x-ray laser pulses at 17.8 keV, in single pulses or 2.26MHz pulse trains of up to 30 pulses, and 250-ns infrared laser single pulses. A range of further possibilities for optical measurements of visible light in x-ray laser experiments using streak optical spectroscopy are also explored, including for the study of x-ray induced optical fluorescence, which often appears as background in thermal radiation measurements. We establish several scenarios where combined emissions from multiple sources are observed and discuss their interpretation. Challenges posed by using x-ray lasers as non-invasive probes of the sample state are addressed. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0142196
View Full Publication open_in_new
Abstract
The chemical interaction of Sn with H2 by X-ray diffraction methods at pressures of 180-210GPa is studied. A previously unknown tetrahydride SnH4 with a cubic structure (fcc) exhibiting superconducting properties below TC = 72 K is obtained; the formation of a high molecular C2/m-SnH14 superhydride and several lower hydrides, fcc SnH2 , and C2-Sn12 H18 , is also detected. The temperature dependence of critical current density JC (T) in SnH4 yields the superconducting gap 2Delta(0)= 21.6 meV at 180GPa. SnH4 has unusual behavior in strong magnetic fields: B,T-linear dependences of magnetoresistance and the upper critical magnetic field BC2 (T) (TC - T). The latter contradicts the Wertheimer-Helfand-Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH4 in non-superconducting state exhibits a deviation from what is expected for phonon-mediated scattering described by the Bloch-Gruneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.
View Full Publication open_in_new
Abstract
Young mafic lavas from the East African Western Rift record melting of subcontinental lithospheric mantle that was metasomatically modified by multiple tectonic events. We report new isotope data from monogenetic cinder cones near Bufumbira, Uganda, in the Virunga Volcanic Field: Sr-87/Sr-86 = 0.7059-0.7079, e(Nd) = -6.5 to -1.3, e(Hf) = -6.3 to +0.9, Pb-208/Pb-204 = 40.1-40.7, Pb-207/Pb-204 = 15.68-15.75, and Pb-206/Pb-204 = 19.27-19.45. Olivine phenocrysts from the Bufumbira lavas have He-3/He-4 = 6.0-7.4 R-A. The isotopic data, in conjunction with major and trace element systematics, indicate that primitive Bufumbira magmas are derived from two different metasomatized lithospheric source domains. Melts generated by lower degrees of melting record greater contributions from similar to 1 to 2 Ga isotopically enriched garnet-amphibole-phlogopite pyroxenite veins within the lithosphere. As melting progresses, these vein melts become increasingly diluted by melts that originate near the lithosphere/asthenosphere boundary, shifting the isotopic compositions toward the common lithospheric mantle (CLM) proposed by Furman and Graham (1999, ). This similar to 450-500 Ma source domain appears to underlie all Western Rift volcanic provinces and is characterized by Sr-87/Sr-86 similar to 0.705, e(Nd) similar to 0, e(Hf) similar to +1 to +3, Pb-206/Pb-204 similar to 19.0-19.2, Pb-208/Pb-204 similar to 39.7, and He-3/He-4 similar to 7 R-A. Basal portions of the dense subcontinental lithospheric mantle may become gravitationally unstable and founder into underlying warmer asthenosphere, exposing surfaces where melting of locally heterogeneous veins produces small-volume, alkaline mafic melts. Mafic lavas from all Western Rift volcanic provinces record mixing between the CLM and locally variable metasomatized source domains, suggesting this style of melt generation is fundamental to the development of magma-poor rifts.
View Full Publication open_in_new
Abstract
Super-Earths span a wide range of bulk densities, indicating a diversity in interior conditions beyond that seen in the solar system. In particular, an emerging population of low-density super-Earths may be explained by volatile-rich interiors. Among these, low-density lava worlds have dayside temperatures that are high enough to evaporate their surfaces, providing a unique opportunity to probe their interior compositions and test for the presence of volatiles. In this work, we investigate the atmospheric observability of low-density lava worlds. We use a radiative-convective model to explore the atmospheric structures and emission spectra of these planets, focusing on three case studies with high observability metrics and substellar temperatures spanning & SIM;1900-2800 K: HD 86226 c, HD 3167 b, and 55 Cnc e. Given the possibility of mixed volatile and silicate interior compositions for these planets, we consider a range of mixed volatile and rock-vapor atmospheric compositions. This includes a range of volatile fractions and three volatile compositions: water-rich (100% H2O), water with CO2 (80% H2O+20% CO2), and a desiccated O-rich scenario (67% O-2+33% CO2). We find that spectral features due to H2O, CO2, SiO, and SiO2 are present in the infrared emission spectra as either emission or absorption features, depending on dayside temperature, volatile fraction, and volatile composition. We further simulate JWST secondary-eclipse observations for each of the three case studies, finding that H2O and/or CO2 could be detected with as few as & SIM;five eclipses. Detecting volatiles in these atmospheres would provide crucial independent evidence that volatile-rich interiors exist among the super-Earth population.
View Full Publication open_in_new
Abstract
The maize female gametophyte contains four cell types: two synergids, an egg cell, a central cell, and a variable number of antipodal cells. In maize, these cells are produced after three rounds of free-nuclear divisions followed by cellularization, differentiation, and proliferation of the antipodal cells. Cellularization of the eight-nucleate syncytium produces seven cells with two polar nuclei in the central cell. Nuclear localization is tightly controlled in the embryo sac. This leads to precise allocation of the nuclei into the cells upon cellularization. Nuclear positioning within the syncytium is highly correlated with their identity after cellularization. Two mutants are described with extra polar nuclei, abnormal antipodal cell morphology, and reduced antipodal cell number, as well as frequent loss of antipodal cell marker expression. Mutations in one of these genes, indeterminate gametophyte2 encoding a MICROTUBULE ASSOCIATED PROTEIN65-3 homolog, shows a requirement for MAP65-3 in cellularization of the syncytial embryo sac as well as for normal seed development. The timing of the effects of ig2 suggests that the identity of the nuclei in the syncytial female gametophyte can be changed very late before cellularization.
View Full Publication open_in_new
Abstract
Iron hydride in Earth's interior can be formed by the reaction between hydrous minerals (water) and iron. Studying iron hydride improves our understanding of hydrogen transportation in Earth's interior. Our high-pressure experiments found that face-centered cubic (fcc) FeHx (x < 1) is stable up to 165 GPa, and our ab initio molecular dynamics simulations predicted that fcc FeHx transforms to a superionic state under lower mantle conditions. In the superionic state, H-ions in fcc FeH become highly diffusive-like fluids with a high diffusion coefficient of-3.7 x 10-4 cm2s �1, which is comparable to that in the liquid Fe-H phase. The densities and melting temperatures of fcc FeHx were systematically calculated. Similar to superionic ice, the extra entropy of diffusive H-ions increases the melting temperature of fcc FeH. The wide stability field of fcc FeH enables hydrogen transport into the outer core to create a potential hydrogen reservoir in Earth's interior, leaving oxygen-rich patches (ORP) above the core mantle boundary (CMB). & COPY; 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
View Full Publication open_in_new
Abstract
The evolution of eukaryotic life was predicated on the development of organelles such as mitochondria and plastids. During this complex process of organellogenesis, the host cell and the engulfed prokaryote became genetically codependent, with the integration of genes from the endosymbiont into the host nuclear genome and subsequent gene loss from the endosymbiont. This process required that horizontally transferred genes become active and properly regulated despite inherent differences in genetic features between donor (endosymbiont) and recipient (host). Although this genetic reorganization is considered critical for early stages of organellogenesis, we have little knowledge about the mechanisms governing this process. The photosynthetic amoeba Paulinella micropora offers a unique opportunity to study early evolutionary events associated with organellogenesis and primary endosymbiosis. This amoeba harbors a "chromatophore," a nascent photosynthetic organelle derived from a relatively recent cyanobacterial association (similar to 120 million years ago) that is independent of the evolution of primary plastids in plants (initiated similar to 1.5 billion years ago). Analysis of the genome and transcriptome of Paulinella revealed that retrotransposition of endosymbiont-derived nuclear genes was critical for their domestication in the host. These retrocopied genes involved in photoprotection in cyanobacteria became expanded gene families and were "rewired," acquiring light-responsive regulatory elements that function in the host. The establishment of host control of endosymbiont-derived genes likely enabled the cell to withstand photo-oxidative stress generated by oxygenic photosynthesis in the nascent organelle. These results provide insights into the genetic mechanisms and evolutionary pressures that facilitated the metabolic integration of the host-endosymbiont association and sustained the evolution of a photosynthetic organelle.
View Full Publication open_in_new
Abstract
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature-dependent neutron diffraction combined with the maximum entropy method. In the cubic Na30Br antiperovskite, the nuclear density distribution maps at SOO K indicate that sodium ions hop within and among oxygen octahedra, and Br- ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connect octahedra in the oh plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I- ions.
View Full Publication open_in_new
Abstract
Materials with an abrupt volume collapse of more than 20% during a pressure-induced phase transition are rarely reported. In such an intriguing phenomenon, the lattice may be coupled with dramatic changes of orbital and/or the spin-state of the transition metal. A combined in situ crystallography and electron spin-state study to probe the mechanism of the pressure-driven lattice collapse in MnS and MnSe is presented. Both materials exhibit a rocksalt-to-MnP phase transition under compression with ca. 22% unit-cell volume changes, which was found to be coupled with the Mn2+(d(5)) spin-state transition from S = 5/2 to S = 1/2 and the formation of Mn-Mn intermetallic bonds as supported by the metallic transport behavior of their high-pressure phases. Our results reveal the mutual relationship between pressure-driven lattice collapse and the orbital/spin-state of Mn2+ in manganese chalcogenides and also provide deeper insights toward the exploration of new metastable phases with exceptional functionalities.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 182
  • Page 183
  • Page 184
  • Page 185
  • Current page 186
  • Page 187
  • Page 188
  • Page 189
  • Page 190
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025