Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Water droplet ripples outward in blue water
    Breaking News
    October 30, 2025

    How do planets get wet? Experiments show water creation during planet formation process

    Grassland with forest on the horizon
    Breaking News
    October 24, 2025

    Prolonged, extreme drought in grassland and shrubland risks Dust Bowl conditions

    "Macromolecular Metabiology," used for frontispiece of CIW publication 624, "Studies of Macromolecular Biosynthesis"
    Breaking News
    October 17, 2025

    From Atoms to Cells: A History of the Biophysics Section

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The N2K ("next 2000'') consortium is carrying out a distributed observing campaign with the Keck, Magellan, and Subaru telescopes, as well as the automatic photometric telescopes of Fairborn Observatory, in order to search for short-period gas giant planets around metal-rich stars. We have established a reservoir of more than 14,000 main-sequence and subgiant stars closer than 110 pc, brighter than V = 10.5, and with 0.4 < B - V < 1.2. Because the fraction of stars with planets is a sensitive function of stellar metallicity, a broadband photometric calibration has been developed to identify a subset of 2000 stars with [Fe/H] > 0.1 dex for this survey. We outline the strategy and report the detection of a planet orbiting the metal-rich G5 IV star HD 88133 with a period of 3.41 days, semivelocity amplitude K = 35.7 m s(-1), and M sin i = 0.29 M-J. Photometric observations reveal that HD 88133 is constant on the 3.415 day radial velocity period to a limit of 0.0005 mag. Despite a transit probability of 19.5%, our photometry rules out the shallow transits predicted by the large stellar radius.
View Full Publication open_in_new
Abstract
We report precision Doppler measurements of three intermediate-mass subgiants obtained at Lick and Keck Observatories. All three stars show variability in their radial velocities consistent with planet-mass companions in Keplerian orbits. We find a planet with a minimum mass MP sin i 2.5 M(J) in a 351.5 day orbit around HD 192699, a planet with a minimum mass of 2.0M(J) in a 341.1 day orbit around HD 210702, and a planet with a minimum mass of 0.61M(J) in a 297.3 day orbit around HD 175541. Mass estimates from stellar interior models indicate that all three stars were formerly A-type, main-sequence dwarfs with masses ranging from 1.65 to 1.85 M(circle dot) . These three long-period planets would not have been detectable during their stars' main-sequence phases due to the large rotational velocities and stellar jitter exhibited by early-type dwarfs. There are now nine " retired'' ( evolved) A-type stars ( M(*) > 1.6 M(circle dot)) with known planets. All nine planets orbit at distances a >= 0.78AU, which is significantly different from the semimajor axis distribution of planets around lower mass stars.
View Full Publication open_in_new
Abstract
We report the detection of five Jovian-mass planets orbiting high-metallicity stars. Four of these stars were first observed as part of the N2K program, and exhibited low rms velocity scatter after three consecutive observations. However, follow-up observations over the last 3 years now reveal the presence of longer period planets with orbital periods ranging from 21 days to a few years. HD 11506 is a G0 V star with a planet of M sin i = 4: 74 M-Jup in a 3.85 yr orbit. HD 17156 is a G0 V star with a 3.12 M-Jup planet in a 21.2 day orbit. The eccentricity of this orbit is 0.67, one of the highest known for a planet with a relatively short period. The orbital period for this planet places it in a region of parameter space where relatively few planets have been detected. HD 125612 is a G3 V star with a planet of M sin i = 3: 5 MJup in a 1.4 yr orbit. HD 170469 is a G5 IV star with a planet of M sin i = 0: 67 M-Jup in a 3.13 year orbit. HD 231701 is an F8 V star with planet of 1.08 M-Jup in a 142 day orbit. All of these stars have supersolar metallicity. Three of the five stars were observed photometrically, but showed no evidence of brightness variability. A transit search conducted for HD 17156 was negative, but covered only 25% of the search space, and so is not conclusive.
View Full Publication open_in_new
Abstract
We report the discovery of two new planets: a 1.94 M-Jup planet in a 1.8 yr orbit of HD 5319, and a 2.51M(Jup) planet in a 1.1 yr orbit of HD 75898. The measured eccentricities are 0.12 for HD 5319b and 0.10 for HD 75898b, and Markov chain Monte Carlo simulations based on the derived orbital parameters indicate that the radial velocities of both stars are consistent with circular planet orbits. With low eccentricity and 1 AU < a < 2 AU, our new planets have orbits similar to terrestrial planets in the solar system. The radial velocity residuals of both stars have significant trends, likely arising from substellar or low-mass stellar companions.
View Full Publication open_in_new
Abstract
Long-term geodynamo evolution is expected to respond to inner core growth and changing patterns of mantle convection. Three geomagnetic superchrons, during which Earth's magnetic field maintained a near-constant polarity state through tens of Myr, are known from the bio/magnetostratigraphic record of Phanerozoic time, perhaps timed according to supercontinental episodicity. Some geodynamo simulations incorporating a much smaller inner core, as would have characterized Proterozoic time, produce field reversals at a much lower rate. Here we compile polarity ratios of site means within a quality filtered global Proterozoic paleomagnetic database, according to recent plate kinematic models. Various smoothing parameters, optimized to successfully identify the known Phanerozoic superchrons, indicate 3-10 possible Proterozoic superchrons during the 1300 Myr interval studied. Proterozoic geodynamo evolution thus appears to indicate a relatively narrow range of reversal behavior through the last two billion years, implying either remarkable stability of core dynamics over this time or insensitivity of reversal rate to core evolution. (C) 2016 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.
View Full Publication open_in_new
Abstract
The paleomagnetic record indicates the geodynamo has been active over much of Earth history with surprisingly little trend in paleointensity. Variability, however, is expected from models that predict a sharp increase in intensity following inner core nucleation (ICN) and implied by Neoproterozoic anomalies that hint at a highly variable field over several hundred million years. Here we demonstrate with a suite of numerical dynamos driven by a new thermal evolution model that the geodynamo could have transitioned from a multipolar to dipolar regime around 1.7Ga, then to a weak-field dynamo around 1.0Ga, and finally to a strong-field dipole following ICN around 650Ma that is maintained to the present day. The occurrence of a weak-field geodynamo in the Neoproterozoic may be consistent with the observed anomalous apparent polar wander paths and reversal behavior. Recovery to a dipolar geodynamo in the Phanerozoic could be a signature of inner core nucleation. Index terms: 1507, 1560, and 1521.
View Full Publication open_in_new
Abstract
The origin of Earth's ancient magnetic field is an outstanding problem. It has recently been proposed that exsolution of MgO from the core may provide sufficient energy to drive an early geodynamo. Here we present new experiments on Mg partitioning between iron-rich liquids and silicate/oxide melts. Our results indicate that Mg partitioning depends strongly on the oxygen content in the iron-rich liquid, in contrast to previous findings that it depends only on temperature. Consequently, MgO exsolution during core cooling is drastically reduced and insufficient to drive an early geodynamo alone. Using the new experimental data, our thermal model predicts inner core nucleation at similar to 850 Ma and a nearly constant paleointensity.
View Full Publication open_in_new
Abstract
The paleomagnetic record is central to our understanding of the history of the Earth. The orientation and intensity of magnetic minerals preserved in ancient rocks indicate the geodynamo has been alive since at least the Archean and possibly the Hadean. A paleomagnetic signature of the initial solidification of the inner core, arguably the singular most important event in core history, however, has remained elusive. In pursuit of this signature we investigate the assumption that the field is a geocentric axial dipole (GAD) over long time scales. We study a suite of numerical dynamo simulations from a paleomagnetic perspective to explore how long the field should be time-averaged to obtain stable paleomagnetic pole directions and intensities. We find that running averages over 20 - 40 kyr are needed to obtain stable paleomagnetic poles with alpha(95) <10 degrees, and over 40 - 120 kyr for alpha(95) <5 degrees, depending on the variability of the field. We find that models with higher heat flux and more frequent polarity reversals require longer time averages, and that obtaining stable intensities requires longer time averaging than obtaining stable directions. Running averages of local field intensity and inclination produce reliable estimates of the underlying dipole moment when reversal frequency is low. However, when heat flux and reversal frequency are increased we find that local observations tend to underestimate virtual dipole moment (VDM) by up to 50% and overestimate virtual axial dipolemoment (VADM) by up to 150%. A latitudinal dependence is found where VDM underestimates the true dipole moment more at low latitudes, while VADM overestimates the true axial dipole moment more at high latitudes. The cause for these observed intensity biases appears to be a contamination of the time averaged field by non-GAD terms, which grows with reversal frequency. We derive a scaling law connecting reversal frequency and site paleolatitude to paleointensity bias (ratio of observed to the true value). Finally we apply this adjustment to the PINT paleointensity record. These biases produce little change to the overall trend of a relatively flat but scattered intensity over the last 3.5 Ga. A more careful intensity adjustment applied during periods when the reversal frequency is known could reveal previously obscured features in the paleointensity record.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 823
  • Page 824
  • Page 825
  • Page 826
  • Current page 827
  • Page 828
  • Page 829
  • Page 830
  • Page 831
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025