Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We compute high-resolution seismic images from scattered wavefield to detect discontinuities beneath the High Lava Plains (HLP), using data recorded at a dense broadband array. Our images of the HLP and surrounding regions reveal (1) a prominent Moho discontinuity with varying depth, with thinnest crust of 35 km beneath the volcanic track, and thickened crust of similar to 45 km beneath the Owyhee Plateau (OP); (2) distinct intracrustal velocity reversals beneath regions of pre-2.0 Ma volcanism and within the OP; and (3) intermittent negative velocity discontinuities in the uppermost mantle beneath regions of Holocene volcanism and volcanic centers near Steens Mountain and Newberry volcano. These features exhibit remarkable similarity with those seen in the surface wave tomography and Ps receiver functions. We fail to find evidence for a ubiquitous regional lithosphere-asthenosphere boundary (LAB). In concert with petrological constraints on the equilibration depths of primitive basaltic melts, our results suggest that the present-day HLP mantle lithosphere is thin or absent, perhaps a consequence of episodes of extensive mantle inflow, lithospheric extension, and possibly melting induced by rapid slab rollback and trench retreat. It remains possible, however, that strong E-W seismic anisotropy reported across this region may reduce the effective S-wave velocity contrast to render the LAB less detectable. In contrast, the Owyhee Plateau exhibits a clear LAB, consistent with it being a block of older preexisting lithosphere. Our images demonstrate the complexity of mantle dynamics in the Cascadian back-arc and the close casual link between subduction-related processes and the origin of HLP volcanism.
View Full Publication open_in_new
Abstract
We compute high-resolution seismic images from scattered wavefield to detect discontinuities beneath the High Lava Plains (HLP), using data recorded at a dense broadband array. Our images of the HLP and surrounding regions reveal (1) a prominent Moho discontinuity with varying depth, with thinnest crust of 35 km beneath the volcanic track, and thickened crust of similar to 45 km beneath the Owyhee Plateau (OP); (2) distinct intracrustal velocity reversals beneath regions of pre-2.0 Ma volcanism and within the OP; and (3) intermittent negative velocity discontinuities in the uppermost mantle beneath regions of Holocene volcanism and volcanic centers near Steens Mountain and Newberry volcano. These features exhibit remarkable similarity with those seen in the surface wave tomography and Ps receiver functions. We fail to find evidence for a ubiquitous regional lithosphere-asthenosphere boundary (LAB). In concert with petrological constraints on the equilibration depths of primitive basaltic melts, our results suggest that the present-day HLP mantle lithosphere is thin or absent, perhaps a consequence of episodes of extensive mantle inflow, lithospheric extension, and possibly melting induced by rapid slab rollback and trench retreat. It remains possible, however, that strong E-W seismic anisotropy reported across this region may reduce the effective S-wave velocity contrast to render the LAB less detectable. In contrast, the Owyhee Plateau exhibits a clear LAB, consistent with it being a block of older preexisting lithosphere. Our images demonstrate the complexity of mantle dynamics in the Cascadian back-arc and the close casual link between subduction-related processes and the origin of HLP volcanism.
View Full Publication open_in_new
Abstract
The cause of seismic anisotropy exhibiting trench parallel fast directions in subduction systems has been the subject of significant recent research. We provide new constraints on the contributions of hydrous phases to seismic anisotropy from an unusually well-localized region of trench parallel fast directions in Rayleigh wave phase velocities near the Cascade arc at 45 to 66 s periods. We constrain the location of the anisotropic material to within or directly above the oceanic plate, using the depth sensitivity of Rayleigh waves as a function of frequency and the accurate slab imaging available for Cascadia from scattered wave studies. We infer that the likely source of trench-parallel anisotropy is either a thin layer of sheared hydrous material directly above the slab or hydrated outer rise faults in the upper part of the subducting plate. Similar contributions to trench parallel anisotropy from hydrous phases are likely stronger in other subduction zones.
View Full Publication open_in_new
Abstract
The cause of seismic anisotropy exhibiting trench parallel fast directions in subduction systems has been the subject of significant recent research. We provide new constraints on the contributions of hydrous phases to seismic anisotropy from an unusually well-localized region of trench parallel fast directions in Rayleigh wave phase velocities near the Cascade arc at 45 to 66 s periods. We constrain the location of the anisotropic material to within or directly above the oceanic plate, using the depth sensitivity of Rayleigh waves as a function of frequency and the accurate slab imaging available for Cascadia from scattered wave studies. We infer that the likely source of trench-parallel anisotropy is either a thin layer of sheared hydrous material directly above the slab or hydrated outer rise faults in the upper part of the subducting plate. Similar contributions to trench parallel anisotropy from hydrous phases are likely stronger in other subduction zones.
View Full Publication open_in_new
Abstract
To constrain mantle structure that might contribute to the topography of the southern Appalachian Mountains, Pn phases from regional earthquakes recorded in northern Georgia by EarthScope Southeastern Suture of the Appalachian Margin Experiment and Transportable Array stations were used to solve for shallow mantle P wave velocities. Mantle velocities vary laterally, with values of 7.6-7.8km/s beneath the higher elevations of the Blue Ridge terrane and northwestern flank of the Inner Piedmont terranes and values of 8.3-8.5km/s farther south where elevation is lower. The zone of low-velocity mantle could represent a source of buoyancy that helps to support the higher elevations, in addition to the root of thickened crust that also exists beneath the mountains.
View Full Publication open_in_new
Abstract
To constrain mantle structure that might contribute to the topography of the southern Appalachian Mountains, Pn phases from regional earthquakes recorded in northern Georgia by EarthScope Southeastern Suture of the Appalachian Margin Experiment and Transportable Array stations were used to solve for shallow mantle P wave velocities. Mantle velocities vary laterally, with values of 7.6-7.8km/s beneath the higher elevations of the Blue Ridge terrane and northwestern flank of the Inner Piedmont terranes and values of 8.3-8.5km/s farther south where elevation is lower. The zone of low-velocity mantle could represent a source of buoyancy that helps to support the higher elevations, in addition to the root of thickened crust that also exists beneath the mountains.
View Full Publication open_in_new
Abstract
Polarities and amplitudes of intracrustal P-SV conversions (P waves converted to vertically polarized shear waves) in receiver functions from the Southeastern Suture of the Appalachian Margin Experiment array and USArray Transportable Array provide new constraints on the origin of seismic reflectivity delineating the Alleghanian detachment in the southern Appalachians(eastern United States). Forward modeling of receiver functions is consistent with a 3.5-km-thick, high shear-wave velocity (Vs = 3.9 km/s) section of deformed Paleozoic platform metasedimentary rocks beneath the Blue Ridge at 3-6.5 km depth. In the Inner Piedmont, conversions from the top and base of a low-Vs zone (3.1 km/s) at depths of 5-9 km are interpreted as a package of metasedimentary rocks or a shear zone characterized by radial anisotropy. The detachment continues to the southeast beneath the Carolina terrane, where high-amplitude negative conversions at 10-13 km depth are consistent with arc rocks (Vs = 4.0 km/s) overlying sheared rocks with lower Vs (3.2 km/s). Southeast-dipping conversions at 5-10 km depth mark the boundary between the Inner Piedmont and Carolina terrane. This study demonstrates that relatively high-frequency receiver functions (up to similar to 3 Hz), though still lower in frequency than P-wave energy analyzed for reflection profiling (>20 Hz), can provide important links between surface geology and active-source experiments to better constrain models of crustal structure.
View Full Publication open_in_new
Abstract
Polarities and amplitudes of intracrustal P-SV conversions (P waves converted to vertically polarized shear waves) in receiver functions from the Southeastern Suture of the Appalachian Margin Experiment array and USArray Transportable Array provide new constraints on the origin of seismic reflectivity delineating the Alleghanian detachment in the southern Appalachians(eastern United States). Forward modeling of receiver functions is consistent with a 3.5-km-thick, high shear-wave velocity (Vs = 3.9 km/s) section of deformed Paleozoic platform metasedimentary rocks beneath the Blue Ridge at 3-6.5 km depth. In the Inner Piedmont, conversions from the top and base of a low-Vs zone (3.1 km/s) at depths of 5-9 km are interpreted as a package of metasedimentary rocks or a shear zone characterized by radial anisotropy. The detachment continues to the southeast beneath the Carolina terrane, where high-amplitude negative conversions at 10-13 km depth are consistent with arc rocks (Vs = 4.0 km/s) overlying sheared rocks with lower Vs (3.2 km/s). Southeast-dipping conversions at 5-10 km depth mark the boundary between the Inner Piedmont and Carolina terrane. This study demonstrates that relatively high-frequency receiver functions (up to similar to 3 Hz), though still lower in frequency than P-wave energy analyzed for reflection profiling (>20 Hz), can provide important links between surface geology and active-source experiments to better constrain models of crustal structure.
View Full Publication open_in_new
Abstract
Flat-slab subduction occurs when the descending plate becomes horizontal at some depth before resuming its descent into the mantle. It is often proposed as a mechanism for the uplifting of deep crustal rocks ('thick-skinned' deformation) far from plate boundaries, and for causing unusual patterns of volcanism, as far back as the Proterozoic eon(1). For example, the formation of the expansive Rocky Mountains and the subsequent voluminous volcanism across much of the western USA has been attributed to a broad region of flat-slab subduction beneath North America that occurred during the Laramide orogeny (80-55 million years ago)(2). Here we study the largest modern flat slab, located in Peru, to better understand the processes controlling the formation and extent of flat slabs. We present new data that indicate that the subducting Nazca Ridge is necessary for the development and continued support of the horizontal plate at a depth of about 90 kilometres. By combining constraints from Rayleigh wave phase velocities with improved earthquake locations, we find that the flat slab is shallowest along the ridge, while to the northwest of the ridge, the slab is sagging, tearing, and re-initiating normal subduction. On the basis of our observations, we propose a conceptual model for the temporal evolution of the Peruvian flat slab in which the flat slab forms because of the combined effects of trench retreat along the Peruvian plate boundary, suction, and ridge subduction. We find that while the ridge is necessary but not sufficient for the formation of the flat slab, its removal is sufficient for the flat slab to fail. This provides new constraints on our understanding of the processes controlling the beginning and end of the Laramide orogeny and other putative episodes of flat-slab subduction.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 725
  • Page 726
  • Page 727
  • Page 728
  • Current page 729
  • Page 730
  • Page 731
  • Page 732
  • Page 733
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025