Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Current end-member models for the geodynamic evolution of orogenic plateaus predict (a) slow and steady rise during crustal shortening and ablative subduction (i.e., continuous removal) of the lower lithosphere or (b) rapid surface uplift following shortening, which is associated with punctuated removal of dense lower lithosphere and/or lower crustal flow. This review integrates results from recent studies of the modern lithospheric structure, geologic evolution, and surface uplift history of the Central Andean Plateau to evaluate the geodynamic processes involved in forming it. Comparison of the timing, magnitude, and distribution of shortening and surface uplift, in combination with other geologic evidence, highlights the pulsed nature of plateau growth. We discuss specific regions and time periods that show evidence for end-member geodynamic processes, including middle-late Miocene surface uplift of the southern Eastern Cordillera and Altiplano associated with shortening and ablative subduction, latest Oligocene-early Miocene and late Miocene-early Pliocene punctuated removal of dense lower lithosphere in the Eastern Cordillera and Altiplano, and late Miocene-early Pliocene crustal flow in the central and northern Altiplano.
View Full Publication open_in_new
Abstract
Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking these two processes remains unclear. One example of foreland deformation corresponding in space and time to flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area of > 4 x 10(5) km(2) in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that similar to 5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene. This magnitude is consistent with prior observations of unusually thickened crust in the Andes immediately south of the subducted ridge that may also have been induced by flat subduction. This suggests that the Fitzcarrald Arch's formation by the Nazca Ridge may be one of the clearest examples of upper plate deformation induced through basal shear observed in a flat-slab subduction setting. We then explore the more general implications of our results for understanding deformation above flat slabs in the geologic past.
View Full Publication open_in_new
Abstract
Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking these two processes remains unclear. One example of foreland deformation corresponding in space and time to flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area of > 4 x 10(5) km(2) in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that similar to 5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene. This magnitude is consistent with prior observations of unusually thickened crust in the Andes immediately south of the subducted ridge that may also have been induced by flat subduction. This suggests that the Fitzcarrald Arch's formation by the Nazca Ridge may be one of the clearest examples of upper plate deformation induced through basal shear observed in a flat-slab subduction setting. We then explore the more general implications of our results for understanding deformation above flat slabs in the geologic past.
View Full Publication open_in_new
Abstract
We perform inversions for the shear-wave velocity structure of the southeastern United States (SEUS) using Rayleigh-wave phase and amplitude data from the broadband stations of the South Eastern Suture of the Appalachian Margin Experiment (SESAME) and EarthScope Transportable Array (TA). Our tomographic images of shear-wave velocities in the upper mantle beneath the SEUS provide new constraints on the evolution of mantle lithosphere, both from the inheritance of structures from repeated Wilson cycles and from processes that have occurred while at a passive margin setting. Our images also allow us to correlate these structures to evidence of Eocene to recent tectonism observed at the surface. We find evidence for both inherited structures and more recently evolved structures, both of which bear some correlation to observations of ongoing tectonism. Our results suggest that lithospheric mantle continues to evolve while in a passive margin setting and that even relatively "stable" continental mantle lithosphere is subject to episodes of delamination, foundering, and erosion due to processes that are still not well understood. Our results provide structural constraints on the types of processes that may be ongoing and on possible explanations for the numerous observations of comparatively recent tectonic activity occurring along this passive margin setting.
View Full Publication open_in_new
Abstract
We perform inversions for the shear-wave velocity structure of the southeastern United States (SEUS) using Rayleigh-wave phase and amplitude data from the broadband stations of the South Eastern Suture of the Appalachian Margin Experiment (SESAME) and EarthScope Transportable Array (TA). Our tomographic images of shear-wave velocities in the upper mantle beneath the SEUS provide new constraints on the evolution of mantle lithosphere, both from the inheritance of structures from repeated Wilson cycles and from processes that have occurred while at a passive margin setting. Our images also allow us to correlate these structures to evidence of Eocene to recent tectonism observed at the surface. We find evidence for both inherited structures and more recently evolved structures, both of which bear some correlation to observations of ongoing tectonism. Our results suggest that lithospheric mantle continues to evolve while in a passive margin setting and that even relatively "stable" continental mantle lithosphere is subject to episodes of delamination, foundering, and erosion due to processes that are still not well understood. Our results provide structural constraints on the types of processes that may be ongoing and on possible explanations for the numerous observations of comparatively recent tectonic activity occurring along this passive margin setting.
View Full Publication open_in_new
Abstract
The 30 November 2017 Delaware earthquake with magnitude M-w 4.2 occurred beneath the northeastern tip of the Delmarva Peninsula near Dover, Delaware. The earthquake and its aftershocks provide an opportunity to evaluate seismicity in a passive margin setting using much improved coverage by high-quality permanent broadband seismometers at regional distance ranges in the central and eastern United States. This is the largest instrumentally recorded earthquake in Delaware, and it triggered a collaborative rapid-response effort by seismologists at five institutions along the mid-Atlantic. As a result of this effort, 18 portable seismographs were deployed in the epicentral region within 24 hrs of the mainshock. High-quality seismic recordings at more than 380 permanent regional broadband seismographic stations in the eastern United States show a remarkably small decrease in amplitude with distance between 800 and 2000 km. The mainshock focal mechanism shows predominantly strike slip with a significant thrust component. The orientation of the subhorizontal P axis is consistent with that of earthquakes in the nearby Reading-Lancaster seismic zone in Pennsylvania, but the trend is rotated counterclockwise about 45 degrees from that of the M-w 5.8 Mineral, Virginia, earthquake. We detected small aftershocks below the normal event detection threshold using a waveform cross-correlation detection method. This demonstrated the effectiveness of this approach for earthquake studies and hazard evaluation in the eastern United States. Based on their waveform similarities, repeating earthquakes with magnitudes greater than 1.5 are detected in 2010, 2015, and 2017. Although there is a large time interval between events, 5 and 2.2 yrs, respectively, the events occur within a spatially tight cluster located near the 2017 Dover, Delaware, earthquake mainshock.
View Full Publication open_in_new
Abstract
The 30 November 2017 Delaware earthquake with magnitude M-w 4.2 occurred beneath the northeastern tip of the Delmarva Peninsula near Dover, Delaware. The earthquake and its aftershocks provide an opportunity to evaluate seismicity in a passive margin setting using much improved coverage by high-quality permanent broadband seismometers at regional distance ranges in the central and eastern United States. This is the largest instrumentally recorded earthquake in Delaware, and it triggered a collaborative rapid-response effort by seismologists at five institutions along the mid-Atlantic. As a result of this effort, 18 portable seismographs were deployed in the epicentral region within 24 hrs of the mainshock. High-quality seismic recordings at more than 380 permanent regional broadband seismographic stations in the eastern United States show a remarkably small decrease in amplitude with distance between 800 and 2000 km. The mainshock focal mechanism shows predominantly strike slip with a significant thrust component. The orientation of the subhorizontal P axis is consistent with that of earthquakes in the nearby Reading-Lancaster seismic zone in Pennsylvania, but the trend is rotated counterclockwise about 45 degrees from that of the M-w 5.8 Mineral, Virginia, earthquake. We detected small aftershocks below the normal event detection threshold using a waveform cross-correlation detection method. This demonstrated the effectiveness of this approach for earthquake studies and hazard evaluation in the eastern United States. Based on their waveform similarities, repeating earthquakes with magnitudes greater than 1.5 are detected in 2010, 2015, and 2017. Although there is a large time interval between events, 5 and 2.2 yrs, respectively, the events occur within a spatially tight cluster located near the 2017 Dover, Delaware, earthquake mainshock.
View Full Publication open_in_new
Abstract
Subduction systems play a key role in plate tectonics, but the deformation of the crust and uppermost mantle during continental subduction remains poorly understood. Observations of seismic anisotropy can provide constraints on dynamic processes in the crust and uppermost mantle in subduction systems. The subduction zone beneath Peru and Bolivia, where the Nazca plate subducts beneath South America, represents a particularly interesting location to study subduction-related deformation, given the along-strike transition from flat to normally dipping subduction. In this study we constrain seismic anisotropy within and above the subducting slab (including the overriding plate) beneath Pent and Bolivia by examining azimuthal variations in radial and transverse component receiver functions. Because anisotropy-aware receiver function analysis has good lateral resolution and depth constraints, it is complementary to previous studies of anisotropy in this region using shear wave splitting or surface wave tomography. We examine data from long-running permanent stations NNA (near Lima, Peru) and LPAZ (near La Paz, Bolivia), and two dense lines of seismometers from the PULSE and CAUGHT deployments in Pent and Bolivia, respectively. The northern line overlies the Peru flat slab, while the southern line overlies the normally dipping slab beneath Bolivia. We applied harmonic decomposition modeling to constrain the presence, depth, and characteristics of dipping and/or anisotropic interfaces within the crust and upper mantle. We found evidence for varying multi-layer anisotropy, in some cages with dipping symmetry axes, underneath both regions. The presence of multiple layers of anisotropy with distinct geometries that change with depth suggests a highly complex deformation regime associated with subduction beneath the Andes. In particular, our identification of depth-dependent seismic anisotropy within the overlying plate crust implies a change in deformation geometry, dominant mineralogy, and/or theology with depth, shedding light on the nature of deep crustal deformation during orogenesis.
View Full Publication open_in_new
Abstract
Subduction systems play a key role in plate tectonics, but the deformation of the crust and uppermost mantle during continental subduction remains poorly understood. Observations of seismic anisotropy can provide constraints on dynamic processes in the crust and uppermost mantle in subduction systems. The subduction zone beneath Peru and Bolivia, where the Nazca plate subducts beneath South America, represents a particularly interesting location to study subduction-related deformation, given the along-strike transition from flat to normally dipping subduction. In this study we constrain seismic anisotropy within and above the subducting slab (including the overriding plate) beneath Pent and Bolivia by examining azimuthal variations in radial and transverse component receiver functions. Because anisotropy-aware receiver function analysis has good lateral resolution and depth constraints, it is complementary to previous studies of anisotropy in this region using shear wave splitting or surface wave tomography. We examine data from long-running permanent stations NNA (near Lima, Peru) and LPAZ (near La Paz, Bolivia), and two dense lines of seismometers from the PULSE and CAUGHT deployments in Pent and Bolivia, respectively. The northern line overlies the Peru flat slab, while the southern line overlies the normally dipping slab beneath Bolivia. We applied harmonic decomposition modeling to constrain the presence, depth, and characteristics of dipping and/or anisotropic interfaces within the crust and upper mantle. We found evidence for varying multi-layer anisotropy, in some cages with dipping symmetry axes, underneath both regions. The presence of multiple layers of anisotropy with distinct geometries that change with depth suggests a highly complex deformation regime associated with subduction beneath the Andes. In particular, our identification of depth-dependent seismic anisotropy within the overlying plate crust implies a change in deformation geometry, dominant mineralogy, and/or theology with depth, shedding light on the nature of deep crustal deformation during orogenesis.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 729
  • Page 730
  • Page 731
  • Page 732
  • Current page 733
  • Page 734
  • Page 735
  • Page 736
  • Page 737
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025