Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Seismic nests (or clusters) are typically defined as regions of high seismic activity at intermediate depths that do not move over time and are not associated with volcanic activity at the surface (e.g. Zarifi and Hayskov, 2003; Zarifi et al., 2007; Prieto et al., 2012). In this study, we focus on a seismic nest located in central Peru beneath the Amazon basin city of Pucallpa. The location of this nest is just beyond the eastern-most extent of the Peruvian flat slab, similar to the settings of two other South American clusters, the Bucaramanga and Pipanaco nests. While the Pucallpa nest is visible in the figures of many earlier papers on intermediate depth South American seismicity, it has not to our knowledge been described as a seismic nest before. We present the first detailed description of the Pucallpa nest, compare it to other established nests, and discuss its implications for our understanding of the Peruvian flat slab. Our results indicate that the Pucallpa nest demarcates the northern margin of a sag in the horizontally subducting Nazca plate in central Peru. The position of the nest along the projected location of the downgoing Mendana fracture zone is consistent with local variations in b-values and could help to explain both the nest's genesis and the co-located change in slab geometry. The nest is also spatially well correlated with the northern margin of the thick-skinned Shira Mountains and with the high heat flow associated with the Agua Caliente dome (Hermoza et al., 2006; Navarro Comet, 2018). Further study is needed to understand the effects of the complex Peruvian slab geometry on the formation of thick skinned deformation and heat flow anomalies on the overriding South American continent.
View Full Publication open_in_new
Abstract
Seismic nests (or clusters) are typically defined as regions of high seismic activity at intermediate depths that do not move over time and are not associated with volcanic activity at the surface (e.g. Zarifi and Hayskov, 2003; Zarifi et al., 2007; Prieto et al., 2012). In this study, we focus on a seismic nest located in central Peru beneath the Amazon basin city of Pucallpa. The location of this nest is just beyond the eastern-most extent of the Peruvian flat slab, similar to the settings of two other South American clusters, the Bucaramanga and Pipanaco nests. While the Pucallpa nest is visible in the figures of many earlier papers on intermediate depth South American seismicity, it has not to our knowledge been described as a seismic nest before. We present the first detailed description of the Pucallpa nest, compare it to other established nests, and discuss its implications for our understanding of the Peruvian flat slab. Our results indicate that the Pucallpa nest demarcates the northern margin of a sag in the horizontally subducting Nazca plate in central Peru. The position of the nest along the projected location of the downgoing Mendana fracture zone is consistent with local variations in b-values and could help to explain both the nest's genesis and the co-located change in slab geometry. The nest is also spatially well correlated with the northern margin of the thick-skinned Shira Mountains and with the high heat flow associated with the Agua Caliente dome (Hermoza et al., 2006; Navarro Comet, 2018). Further study is needed to understand the effects of the complex Peruvian slab geometry on the formation of thick skinned deformation and heat flow anomalies on the overriding South American continent.
View Full Publication open_in_new
Abstract
The eastern North American margin community seismic experiment (ENAM-CSE) was conceived to target the ENAM Geodynamic Processes at Rifting and Subducting Margins (GeoPRISMS) primary site with a suite of both active- and passive-source seismic data that would shed light on the processes associated with rift initiation and evolution. To fully understand the ENAM, it was necessary to acquire a seismic dataset that was both amphibious, spanning the passive margin from the continental interior onto the oceanic portion of the North American plate, and multiresolution, enabling imaging of the sediments, crust, and mantle lithosphere. The ENAM-CSE datasets were collected on- and offshore of North Carolina and Virginia over a series of cruises and land-based deployments between April 2014 and June 2015. The passive-source component of the ENAM-CSE included 30 broadband ocean-bottom seismometers (OBSs) and 3 onshore broadband instruments. The broadband stations were deployed contemporaneously with those of the easternmost EarthScope Transportable Array creating a trans-margin amphibious seismic dataset. The active-source portion of the ENAM-CSE included several components: (1) two onshore wide-angle seismic profiles where explosive shots were recorded on closely spaced geophones; (2) four major offshore wide-angle seismic profiles acquired with an airgun source and short-period OBSs (SPOBSs), two of which were extended onland by deployments of short-period seismometers; (3) marine multichannel seismic (MCS) data acquired along the four lines of SPOBSs and a series of other profiles along and across the margin. During the cruises, magnetic, gravity, and bathymetric data were also collected along all MCS profiles. All of the ENAM-CSE products were made publicly available shortly after acquisition, ensuring unfettered community access to this unique dataset.
View Full Publication open_in_new
Abstract
The eastern North American margin community seismic experiment (ENAM-CSE) was conceived to target the ENAM Geodynamic Processes at Rifting and Subducting Margins (GeoPRISMS) primary site with a suite of both active- and passive-source seismic data that would shed light on the processes associated with rift initiation and evolution. To fully understand the ENAM, it was necessary to acquire a seismic dataset that was both amphibious, spanning the passive margin from the continental interior onto the oceanic portion of the North American plate, and multiresolution, enabling imaging of the sediments, crust, and mantle lithosphere. The ENAM-CSE datasets were collected on- and offshore of North Carolina and Virginia over a series of cruises and land-based deployments between April 2014 and June 2015. The passive-source component of the ENAM-CSE included 30 broadband ocean-bottom seismometers (OBSs) and 3 onshore broadband instruments. The broadband stations were deployed contemporaneously with those of the easternmost EarthScope Transportable Array creating a trans-margin amphibious seismic dataset. The active-source portion of the ENAM-CSE included several components: (1) two onshore wide-angle seismic profiles where explosive shots were recorded on closely spaced geophones; (2) four major offshore wide-angle seismic profiles acquired with an airgun source and short-period OBSs (SPOBSs), two of which were extended onland by deployments of short-period seismometers; (3) marine multichannel seismic (MCS) data acquired along the four lines of SPOBSs and a series of other profiles along and across the margin. During the cruises, magnetic, gravity, and bathymetric data were also collected along all MCS profiles. All of the ENAM-CSE products were made publicly available shortly after acquisition, ensuring unfettered community access to this unique dataset.
View Full Publication open_in_new
Abstract
The border between Georgia and South Carolina has a moderate amount of seismicity typical of the Piedmont Province of the eastern United States and greater than most other intraplate regions. Historical records suggest on average a M-w 4.5 earthquake every 50 yr in the region of the J. Strom Thurmond Reservoir, which is located on the border between Georgia and South Carolina. The M-w 4.1 earthquake on 15 February 2014 near Edgefield, South Carolina, was one of the largest events in this region recorded by nearby modern seismometers, providing an opportunity to study its source properties and aftershock productivity. Using the waveforms of the M-w 4.1 mainshock and the only cataloged M w 3.0 aftershock as templates, we apply a matched-filter technique to search for additional events between 8 and 22 February 2014. The resulting six new detections are further employed as new templates to scan for more events. Repeating the waveform-matching method with new templates yields 13 additional events, for a total of 19 previously unidentified events with magnitude 0.06 and larger. The low number of events suggests that this sequence is deficient in aftershock production, as compared with expected aftershock productivities for other mainshocks of similar magnitudes. Hypocentral depths of the M-w 4.1 mainshock and M-w 3.0 aftershock are estimated by examining the differential time between a depth phase called sPL and P-wave arrivals, as well as by modeling the depth phase of body waves at shorter periods. The best-fitting depths for both events are around 3-4 km. The obtained stress drops for the M-w 4.1 mainshock and M-w 3.0 aftershock are 3.75 and 4.44 MPa, respectively. The corresponding updated moment magnitude for the aftershock is 2.91.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 730
  • Page 731
  • Page 732
  • Page 733
  • Current page 734
  • Page 735
  • Page 736
  • Page 737
  • Page 738
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025