Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
In prior work we found that precise approximation of the continuity constraint is crucial for accurate propagation of tracer data when advected through a background incompressible velocity field (Sime et al., 2021, ). Here we extend this investigation to compressible flows using the anelastic liquid approximation (ALA) and address four related issues: (a) Exact conservation of tracer discretized fields through a background compressible velocity; (b) Exact mass conservation; (c) Addition and removal of tracers without affecting (exact) conservation to preserve a consistent number of tracers per cell; and (d) the diffusion of tracer data, for example, as induced by thermal or chemical effects. In this process we also present an abstract formulation of the interior penalty hybrid discontinuous Galerkin (HDG) finite element formulation for diffusion problems and apply it to the advection-diffusion and compressible Stokes systems. Finally we present numerical experiments exhibiting the HDG compressible Stokes momentum formulation's superconvergent compressibility approximation and reproduce examples of a community benchmark for the ALA.
View Full Publication open_in_new
Abstract
Oceanic crust subduction sequesters substantial amounts of argon in the Earth's mantle, while atmosphere-derived argon affects only the isotopic composition and not the overall budget, according to geodynamic-geochemical models of mantle convection.
View Full Publication open_in_new
SURI 2022
September 06, 2022
Campus News

From chondrite characterization to deep-sea microbes: SURI interns present their research at final symposium

Jens Barosch studies a sample of the Ryugu meteorite under a microscope on campus.

Jens Barosch studies a sample of the Ryugu meteorite under a microscope on campus.

September 06, 2022
Spotlight

Jens Barosch studies stardust to understand our Solar System

The seismology group in 1990. Back row left to right: Fred Pollitz, Paul Silver, Selwyn Sacks, Gotz Bokelmann, Michael Acierno, Craig Bina, David James, Alan Linde. Front row left to right: Satoshi Kaneshima, Randy Kuehnel, and Chris Kincaid. Courtesy of Carnegie Institution for Science.

The seismology group in 1990. Back row left to right: Fred Pollitz, Paul Silver, Selwyn Sacks, Gotz Bokelmann, Michael Acierno, Craig Bina, David James, Alan Linde. Front row left to right: Satoshi Kaneshima, Randy Kuehnel, and Chris Kincaid. Courtesy of Carnegie Institution for Science.

September 06, 2022
Campus News

Michael Acierno's retirement speech

Abstract
Aging of immune organs, termed as immunosenescence, is suspected to promote systemic inflammation and age-associated disease. The cause of immunosenescence and how it promotes disease, however, has remained unexplored. We report that the Drosophila fat body, a major immune organ, undergoes immunosenescence and mounts strong systemic inflammation that leads to de-regulation of immune deficiency (IMD) signaling in the midgut of old animals. Inflamed old fat bodies secrete circulating peptidoglycan recognition proteins that repress IMD activity in the midgut, thereby promoting gut hyperplasia. Further, fat body immunosenecence is caused by ageassociated lamin-B reduction specifically in fat body cells, which then contributes to heterochromatin loss and de-repression of genes involved in immune responses. As lamin-associated heterochromatin domains are enriched for genes involved in immune response in both Drosophila and mammalian cells, our findings may provide insights into the cause and consequence of immunosenescence during aging. Overall design: 17 samples from the fat body, the midgut, or the whole gut with different ages or RNAi treatment. 6 of the samples were wildtype young control. For each experiment, we had two or three biological replicates.
View Full Publication open_in_new
Abstract
Aging of immune organs, termed as immunosenescence, is suspected to promote systemic inflammation and age-associated disease. The cause of immunosenescence and how it promotes disease, however, has remained unexplored. We report that the Drosophila fat body, a major immune organ, undergoes immunosenescence and mounts strong systemic inflammation that leads to de-regulation of immune deficiency (IMD) signaling in the midgut of old animals. Inflamed old fat bodies secrete circulating peptidoglycan recognition proteins that repress IMD activity in the midgut, thereby promoting gut hyperplasia. Further, fat body immunosenecence is caused by ageassociated lamin-B reduction specifically in fat body cells, which then contributes to heterochromatin loss and de-repression of genes involved in immune responses. As lamin-associated heterochromatin domains are enriched for genes involved in immune response in both Drosophila and mammalian cells, our findings may provide insights into the cause and consequence of immunosenescence during aging. Overall design: 17 samples from the fat body, the midgut, or the whole gut with different ages or RNAi treatment. 6 of the samples were wildtype young control. For each experiment, we had two or three biological replicates.
View Full Publication open_in_new
Abstract
Difficulties to accurately map epigenomes in a few cells sorted or dissected from tissues have hampered our understanding of how chromatin modification regulates development and diseases. Despite recent progress, all reported chromatin-immunoprecipitation-based deep sequencing (ChIP-seq) methods have not achieved high quality mapping of rare cell populations. We report Recovery via Protection (RP)-ChIP-seq and favored amplification RP-ChIP-seq (FARP-ChIP-seq) for as few as 500 cells with superior quality compared to all reported techniques to date. FARP-ChIP-seq accurately mapped histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in long-term hematopoietic stem cells (LT-HSCs), short-term HSCs (ST-HSCs), and multi-potent progenitors (MPPs) sorted from one mouse. These high quality datasets not only implicate genes involved in HSC differentiation but also demonstrate a general lack of H3K4me3/H3K27me3 bivalency on hematopoietic genes in HSCs. Thus the method offers accurate mapping for fewest cells. Overall design: two H3K4me3 replications for mESC, two to three replications of H3K4me3 and H3K27me3 for LT-HSC, ST-HSC and MPP
View Full Publication open_in_new
Abstract
Difficulties to accurately map epigenomes in a few cells sorted or dissected from tissues have hampered our understanding of how chromatin modification regulates development and diseases. Despite recent progress, all reported chromatin-immunoprecipitation-based deep sequencing (ChIP-seq) methods have not achieved high quality mapping of rare cell populations. We report Recovery via Protection (RP)-ChIP-seq and favored amplification RP-ChIP-seq (FARP-ChIP-seq) for as few as 500 cells with superior quality compared to all reported techniques to date. FARP-ChIP-seq accurately mapped histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in long-term hematopoietic stem cells (LT-HSCs), short-term HSCs (ST-HSCs), and multi-potent progenitors (MPPs) sorted from one mouse. These high quality datasets not only implicate genes involved in HSC differentiation but also demonstrate a general lack of H3K4me3/H3K27me3 bivalency on hematopoietic genes in HSCs. Thus the method offers accurate mapping for fewest cells. Overall design: two H3K4me3 replications for mESC, two to three replications of H3K4me3 and H3K27me3 for LT-HSC, ST-HSC and MPP
View Full Publication open_in_new
Abstract
We discovered that two mitotic regulators, BuGZ and Bub3, involved in splicing regulation during interphase Overall design: 8 samples from primary Human foreskin fibroblast cells (HFFs) , 12 samples from TOV21G cells. Control siRNA. BuGZ siRNA or Bub3 siRNA were transfected for 48 h before sample collection. Cells treated with pladienolide B served as positive controls. For each RNAi experiment, we had two biological replicates.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 585
  • Page 586
  • Page 587
  • Page 588
  • Current page 589
  • Page 590
  • Page 591
  • Page 592
  • Page 593
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025