Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Knowledge of the sound velocity of core materials is essential to explain the observed anomalously low shear wave velocity (V-S) and high Poisson's ratio (sigma) in the solid inner core. To date, neither V-S nor sigma of Fe and Fe-Si alloy have been measured under core conditions. Here, we present V-S and sigma derived from direct measurements of the compressional wave velocity, bulk sound velocity, and density of Fe and Fe-8.6 wt%Si up to similar to 230 GPa and similar to 5400 K. The new data show that neither the effect of temperature nor incorporation of Si would be sufficient to explain the observed low V-S and high sigma of the inner core. A possible solution would add carbon (C) into the solid inner core that could further decrease V-S and increase sigma. However, the physical property-based Fe-Si-C core models seemingly conflict with the partitioning behavior of Si and C between liquid and solid Fe.
View Full Publication open_in_new
Abstract
Subduction of oceanic lithosphere transports surface H2O into the mantle. Recent studies show that dense SiO2 in the form of stishovite, an abundant mineral in subducted oceanic crust at depths greater than -270 km, has the potential to host and transport a considerable amount of H2O into the lower mantle, but the H2O storage capacity of SiO2 phases at high pressure and temperature remains uncertain. We investigate the hydration of stishovite and its higher-pressure polymorphs, beta-stishovite and seifertite, with in situ X-ray diffraction experiments at high pressures and temperatures. The H2O contents in SiO2 phases are quantified based on observed increases in unit cell volume relative to the anhydrous SiO2 system. Density functional theory (DFT) computations permit calibration of water content as a function of volume change based on interstitial substitution of H2O. Regression of our experimental data indicates an H2O storage capacity in stishovite of -3.5 wt% in the transition zone and shallow lower mantle, decreasing to about 0.8 wt% at the base of the mantle. We find that SiO2-bearing subducted oceanic crust can accommodate all the H2O in slab lithosphere that survives sub-arc dehydration. Hydration of silica phases in subducted oceanic crust and their unparalleled capacity to host significant amounts of H2O even at high mantle temperatures provides a unique mechanism for transport and storage of water in the deepest mantle. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
View Full Publication open_in_new
Abstract
We introduce and describe a new software infrastructure TerraFERMA, the Transparent Finite Element Rapid Model Assembler, for the rapid and reproducible description and solution of coupled multiphysics problems. The design of TerraFERMA is driven by two computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced, and modified in a manner such that the best ideas in computation and Earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high-level problem description (FEniCS), composable solvers for coupled multiphysics problems (PETSc), and an options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an interface that organizes the scientific and computational choices required in a model into a single options file from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible, while still permitting the individual researcher considerable latitude in model construction. TerraFERMA solves partial differential equations using the finite element method. It is particularly well suited for nonlinear problems with complex coupling between components. TerraFERMA is open-source and available at http://terraferma. github. io, which includes links to documentation and example input files.
View Full Publication open_in_new
Abstract
The origin of major volatiles nitrogen, carbon, hydrogen, and sulfur in planets is critical for understanding planetary accretion, differentiation, and habitability. However, the detailed process for the origin of Earth's major volatiles remains unresolved. Nitrogen shows large isotopic fractionations among geochemical and cosmochemical reservoirs, which could be used to place tight constraints on Earth's volatile accretion process. Here we experimentally determine N-partitioning and -isotopic fractionation between planetary cores and silicate mantles. We show that the core/mantle N-isotopic fractionation factors, ranging from -4 to +10, are strongly controlled by oxygen fugacity, and the core/mantle N-partitioning is a multi-function of oxygen fugacity, temperature, pressure, and compositions of the core and mantle. After applying N-partitioning and -isotopic fractionation in a planetary accretion and core-mantle differentiation model, we find that the N-budget and -isotopic composition of Earth's crust plus atmosphere, silicate mantle, and the mantle source of oceanic island basalts are best explained by Earth's early accretion of enstatite chondrite-like impactors, followed by accretion of increasingly oxidized impactors and minimal CI chondrite-like materials before and during the Moon-forming giant impact. Such a heterogeneous accretion process can also explain the carbon-hydrogen-sulfur budget in the bulk silicate Earth. The Earth may thus have acquired its major volatile inventory heterogeneously during the main accretion phase.
View Full Publication open_in_new
Abstract
The BC8 silicon allotrope has a lattice thermal conductivity 1-2 orders of magnitude lower than that of diamond-cubic silicon. In the current work, the phonon density of states, phonon dispersion, and lattice thermal conductivity are investigated by inelastic neutron scattering measurements and first-principles calculations. Flat phonon bands are found to play a critical role in the reduction of lattice thermal conductivity in BC8-Si. Such bands in the low-energy range enhance the phonon scattering between acoustic and low-energy optical phonons, while bands in the intermediate-energy range act as a scattering bridge between the high- and low-energy optical phonons. They significantly enlarge the phonon-phonon scattering phase space and reduces the lattice thermal conductivity in this novel silicon allotrope. This work provides insights into the significant reduction of the lattice thermal conductivity in BC8 -Si, thus expanding the understanding of novel silicon allotropes and their development for electronic devices. (C) 2021 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
This study revisits subduction processes at the Hellenic Subduction Zone (HSZ) including tearing, segmentation, and backstepping, by refining the geometry of the Nubian slab down to 150-180 km depth using well-located hypocentres from global and local seismicity catalogues. At the western termination of the HSZ, the Kefalonia Transform Fault marks the transition between oceanic and continental lithosphere subducting to the south and to the north of it, respectively. A discontinuity is suggested to exist between the two slabs at shallow depths. The Kefalonia Transform Fault is interpreted as an active Subduction-Transform-Edge-Propagator-fault formed as consequence of faster trench retreat induced by the subduction of oceanic lithosphere to the south of it. A model reconstructing the evolution of the subduction system in the area of Peloponnese since 34 Ma, involving the backstepping of the subduction to the back-side of Adria, provides seismological evidence that supports the single-slab model for the HSZ and suggests the correlation between the downdip limit of the seismicity to the amount of subducted oceanic lithosphere. In the area of Rhodes, earthquake hypocentres indicate the presence of a NW dipping subducting slab that rules out the presence of a NE-SW striking Subduction-Transform-Edge-Propagator-fault in the Pliny-Strabo trenches region. Earthquake hypocentres also allow refining the slab tear beneath southwestern Anatolia down to 150-180 km depth. Furthermore, the distribution of microseismicity shows a first-order slab segmentation in the region between Crete and Karpathos, with a less steep and laterally wider slab segment to the west and a steeper and narrower slab segment to the east. Thermal models indicate the presence of a colder slab beneath the southeastern Aegean that leads to deepening of the intermediate-depth seismicity. Slab segmentation affects the upper plate deformation that is stronger above the eastern slab segment and the seismicity along the interplate seismogenic zone.
View Full Publication open_in_new
Abstract
Super-Earths ranging up to 10 Earth masses (M-E) with Earth-like density are common among the observed exoplanets thus far, but their measured masses and radii do not uniquely elucidate their internal structure. Exploring the phase transitions in the Mg-silicates that define the mantle-structure of super-Earths is critical to characterizing their interiors, yet the relevant terapascal conditions are experimentally challenging for direct structural analysis. Here we investigated the crystal chemistry of Fe3O4 as a low-pressure analog to Mg2SiO4 between 45-115 GPa and up to 3000 K using powder and single crystal X-ray diffraction in the laser-heated diamond anvil cell. Between 60-115 GPa and above 2000 K, Fe3O4 adopts an 8-fold coordinated Th3P4-type structure (I-43d, Z = 4) with disordered Fe2+ and Fe3+ into one metal site. This Fe-oxide phase is isostructural with that predicted for Mg2SiO4 above 500 GPa in super-Earth mantles and suggests that Mg2SiO4 can incorporate both ferric and ferrous iron at these conditions. The pressure-volume behavior observed in this 8-fold coordinated Fe3O4 indicates a maximum 4% density increase across the 6- to 8-fold coordination transition in the analog Mg-silicate. Reassessment of the FeO-Fe3O4 fugacity buffer considering the Fe3O4 phase relationships identified in this study reveals that increasing pressure and temperature to 120 GPa and 3000 K in Earth and planetary mantles drives iron toward oxidation.
View Full Publication open_in_new
Abstract
We examine the thermodynamic and dynamic stability (i.e., phonon dispersion) of mixed silicon-carbon clathrate frameworks using first-principles calculations as a function of pressure and composition. Silicon atoms were substituted on special framework Wyckoff positions in the Type-I and Type-II empty carbon clathrate structures over a broad compositional range, and the enthalpies of the mixed clathrates were compared to pure silicon and carbon clathrates, as well as the thermodynamic ground states. While all mixed clathrates examined were found to be metastable with respect to elemental formation components and/or silicon carbide, certain empty binary host lattices are found to be lower-energy phases than the pure-component clathrate endmembers at high pressure, in particular Type-I C22Si24 and Type-II C32Si104. This enhanced energetic stability is rationalized by a decrease of energy upon doping specific crystallographic positions. When occupied by small guest ions like Li+ and Na+, these mixed C-Si clathrate structures exhibit minima in their formation enthalpies under high-pressure conditions, providing insights into potential synthetic pathways.
View Full Publication open_in_new
Abstract
Nanothreads are one-dimensional nanomaterials composed of a primarily sp(3) hydrocarbon backbone, typically formed through the compression of small molecules to high pressures. Although nanothreads have been synthesized from a range of precursors, controlling reaction pathways to produce atomically precise materials remains a difficult challenge. Here, we show how heteroatoms within precursors can serve as "thread-directing" groups by selecting for specific cycloaddition reaction pathways. By using a less-reactive diazine group within a six-membered aromatic ring, we successfully predict and synthesize the first carbon nanothread material derived from pyridazine (1,2-diazine, C4H4N2). Compared with previous nanothreads, the synthesized polypyridazine, shows a predominantly uniform chemical structure with exceptional long-range order, allowing for structural characterization using vibrational spectroscopy and X-ray diffraction. The results demonstrate how thread-directing groups can be used for reaction pathway control and the formation of chemically precise nanothreads with a high degree of structural order.
View Full Publication open_in_new
Abstract
Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island-based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower planewith a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this "seismic belt" occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of similar to 500 degrees C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 581
  • Page 582
  • Page 583
  • Page 584
  • Current page 585
  • Page 586
  • Page 587
  • Page 588
  • Page 589
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025