Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We quantitatively explore element redistribution at subduction zones using numerical mass balance models to evaluate the roles of the subduction zone filter in the Earth's geochemical cycle. Our models of slab residues after arc magma genesis differ from previous ones by being internally consistent with geodynamic models of modern arcs that successfully explain arc magma genesis and include element fluxes from the dehydration/melting of each underlying slab component. We assume that the mantle potential temperature (T-p) was 1400-1650 degrees C at 3.5-1.7 Ga and gradually decreased to 1300-1350 degrees C today. Hot subduction zones with T-p approximate to 1650 degrees C have a thermal structure like modern SW Japan where high-Mg andesite is formed which is chemically like continental crust. After 2.5-1.7 Gyr of storage in the mantle, the residual igneous oceanic crust from hot subduction zones can evolve isotopically to the HIMU mantle component, the residual base of the mantle wedge to EMI, the residual sediment becomes an essential part of EMII, and the residual top of the mantle wedge can become the subcontinental lithosphere component. The Common or Focal Zone component is a stable mixture of the first three residues occasionally mixed with early depleted mantle. Slab residues that recycled earlier (approximate to 2.5 Ga) form the DUPAL anomaly in the southern hemisphere, whereas residues of more recent recycling (approximate to 1.7 Ga) underlie the northern hemisphere. These ages correspond to major continental crust forming events. The east-west heterogeneity of the depleted upper mantle involves subcontinental mantle except in the Pacific.
View Full Publication open_in_new
Abstract
The Evje-Iveland pegmatite field in Norway contains pegmatites that are known for their rare scandium mineralization. The petrogenesis of these pegmatites has been debated in the literature for nearly a century. Hypotheses for the origin of the pegmatite-forming melt have included either anatexis of the host amphibolite in vapor-absent conditions, wherein scandium is scavenged from the host amphibolite; or magmatic differentiation, wherein scandium is concentrated through magmatic processes. In order to test the hypothesis that the pegmatite-forming melt was sourced from the host amphibolite, partial melting experiments on the host amphibolite have been performed. These experiments were performed at temperatures ranging from 700 to 1064. C and pressures between 400 and 550 MPa in a piston-cylinder apparatus. The solidus of the host amphibolite has been determined to be approximately 900 degrees C at 500 MPa and is significantly higher than the temperature of pegmatite formation. Partial melting of <40% can produce glasses that are broadly granitic in composition and are aluminum- and sodium-rich; however, they are less siliceous than the Evje-Iveland pegmatites. These glasses are also scandium- and REE-poor, and have REE patterns similar to leucosomes in vein-type migmatites, produced at low pressures, but dissimilar to the Evje-Iveland pegmatites. The results of these experiments are thus inconsistent with the hypothesis that the Evje-Iveland pegmatites or, by extension, other rare-element pegmatites, are the result of direct anatexis alone of common metamorphic rock such as amphibolites. It is proposed that the formation of the Evje-Iveland pegmatites is the result of partial melting of a scandium-rich ultramafic or mafic complex, differentiation of that partial melt, and emplacement of that melt into the host amphibolite. Thus, the pegmatite-forming melt may represent the final stages of magmatic differentiation, which is the preferred model for the formation of the Evje-Iveland pegmatites.
View Full Publication open_in_new
Abstract
Recent studies of highly compressed organic molecules reveal the synthesis of one-dimensional (1D) nanothread structures, typically formed through addition reactions of unsaturated bonds. Although these nanostructures have been demonstrated from molecules such as benzene, pyridine, and thiophene, it remains unclear whether functionalized nanothreads can be produced from precursors with different substituent groups under high-pressure conditions. Here, we examine the controlled pressure-induced polymerization of several para-disubstituted benzene molecular crystals and cocrystals with different functional groups including dinitrobenzene, diethynylbenzene, and dicyanobenzene. X-ray diffraction and infrared spectroscopy provide evidence for the formation of ordered nanostructures that maintain their topological relationship with the starting molecular phase and preserve initial functionality. Although no clear correlation between specific functional groups and polymerization pressure was observed, the proximity toward sandwich-type pi-stacking within the starting molecular crystals influences reaction pathway selectivity and the formation of new saturated bonds under normal compression conditions. We propose a simple correlation related to pi-stacking, wherein the stacking distance between parallel planes of monomers and the slippage angle between pi-stacks are important aspects that influence polymerization pathway selectivity and the formation of ordered products under normal compression at room temperature. Functionalized nanothread structures are possible through careful precursor selection, and an improved understanding of pi-stacking polymerization may lead to the realization of well-defined organic nanostructures with designed functionality.
View Full Publication open_in_new
Abstract
Some of Earth's coldest mantle is found in subduction zones at the tip of the mantle wedge that lies between the subducting and overriding plates. This forearc mantle is isolated from the flow of hot material beneath the volcanic arc, and so is inferred to reach temperatures no more than 600 to 800 degrees C - conditions at which hydrous mantle minerals should be stable. The forearc mantle could therefore constitute a significant reservoir for water if sufficient water is released from the subducting slab into the mantle wedge. Such a reservoir could hydrate the plate interface and has been invoked to aid the genesis of megathrust earthquakes and slow slip events. Our synthesis of results from thermal models that simulate the conditions for subduction zones globally, however, indicates that dehydration of subducting plates is too slow over the life span of a typical subduction zone to hydrate the forearc mantle. Hot subduction zones, where slabs dehydrate rapidly, are an exception. The hottest, most buoyant forearcs are most likely to survive plate collisions and be exhumed to the surface, so probably dominate the metamorphic rock record. Analysis of global seismic data confirms the generally dry nature of mantle forearcs. We conclude that many subduction zones probably liberate insufficient water to hydrate the shallower plate boundary where great earthquakes and slow slip events nucleate. Thus, we suggest that it is solid-state processes and not hydration that leads to weakening of the plate interface in cold subduction zones.
View Full Publication open_in_new
Abstract
Carbon-based frameworks composed of sp(3) bonding represent a class of extremely lightweight strong materials, but only diamond and a handful of other compounds exist despite numerous predictions. Thus, there remains a large gap between the number of plausible structures predicted and those synthesized. We used a chemical design principle based on boron substitution to predict and synthesize a three-dimensional carbon-boron framework in a host/guest clathrate structure. The clathrate, with composition 2Sr@B6C6, exhibits the cubic bipartite sodalite structure (type VII clathrate) composed of sp(3)-bonded truncated octahedral C12B12 host cages that trap Sr2+ guest cations. The clathrate not only maintains the robust nature of diamond-like sp(3) bonding but also offers potential for a broad range of compounds with tunable properties through substitution of guest atoms within the cages.
View Full Publication open_in_new
Abstract
Recent results from chemical tagging studies using Apache Point Observatory Galactic Evolution Experiment data suggest a strong link between the chemical abundance patterns of stars found within globular clusters (GC), and chemically peculiar populations in the Galactic halo field. In this paper, we analyse the chemical compositions of stars within the cluster body and tidal streams of Palomar 5, a GC that is being tidally disrupted by interaction with the Galactic gravitational potential. We report the identification of nitrogen-rich (N-rich) stars both within and beyond the tidal radius of Palomar 5, with the latter being clearly aligned with the cluster tidal streams; this acts as confirmation that N-rich stars are lost to the Galactic halo from GCs, and provides support to the hypothesis that field N-rich stars identified by various groups have a GC origin.
View Full Publication open_in_new
Abstract
Preparing amorphous phases of carbon with mostly sp(3) bonding in bulk is challenging, but macroscopic samples that are nearly pure sp(3) are synthesized here by heating fullerenes at high pressure.
View Full Publication open_in_new
Abstract
Si-24 is a new, open-framework silicon allotrope that is metastable at ambient conditions. Unlike diamond cubic silicon, which is an indirect-gap semiconductor, Si-24 has a quasidirect gap near 1.4 eV, presenting new opportunities for optoelectronic and solar energy conversion devices. Previous studies indicate that Na can diffuse from micron-sized grains of a high-pressure Na4Si24 precursor to create Si-24 powders at ambient conditions. Remarkably, we demonstrate here that Na remains highly mobile within large (similar to 100 mu m) Na4Si24 single crystals. Na readily diffuses out of Na4Si24 crystals under vacuum with gentle heating (10(-4) mbar at 125 degrees C) and can be further reacted with iodine to produce large Si-24 crystals that are 99.9985 at% silicon, as measured by wavelength-dispersive x-ray spectroscopy. Si-24 crystals display a sharp, direct optical absorption edge at 1.51(1) eV with an absorption coefficient near the band edge that is demonstrably greater than diamond cubic silicon. Temperature-dependent electrical transport measurements confirm the removal of Na from metallic Na(4)Si(24)to render single-crystalline semiconducting samples of Si-24. These optical and electrical measurements provide insights into key parameters such as the electron donor impurity level from residual Na, reduced electron mass, and electron relaxation time. Effective Na removal on bulk length scales and the high absorption coefficient of single-crystal Si-24 indicate promise for use of this material in bulk and thin film forms with potential applications in optoelectronic technologies.
View Full Publication open_in_new
Abstract
We explore the element redistribution at mid-ocean ridges (MOR) using a numerical model to evaluate the role of decompression melting of the mantle in Earth's geochemical cycle, with focus on the formation of the depleted mantle component. Our model uses a trace element mass balance based on an internally consistent thermodynamic-petrologic computation to explain the composition of MOR basalt (MORB) and residual peridotite. Model results for MORB-like basalts from 3.5 to 0 Ga indicate a high mantle potential temperature (Tp) of 1650-1500 degrees C during 3.5-1.5 Ga before decreasing gradually to similar to 1300 degrees C today. The source mantle composition changed from primitive (PM) to depleted as Tp decreased, but this source mantle is variable with an early depleted reservoir (EDR) mantle periodically present. We examine a twostage Sr-Nd-Hf-Pb isotopic evolution of mantle residues from melting of PM or EDR at MORs. At high-Tp (3.5-1.5 Ga), the MOR process formed extremely depleted DMM. This coincided with formation of the majority of the continental crust, the subcontinental lithospheric mantle, and the enriched mantle components formed at subduction zones and now found in OIB. During cooler mantle conditions (1.5-0 Ga), the MOR process formed most of the modern ocean basin DMM. Changes in the mode of mantle convection from vigorous deep mantle recharge before similar to 1.5 Ga to less vigorous afterward is suggested to explain the thermochemical mantle evolution.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 581
  • Page 582
  • Page 583
  • Page 584
  • Current page 585
  • Page 586
  • Page 587
  • Page 588
  • Page 589
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025