Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
A high-magnetic field once existed in the early history of the Moon, suggesting the core once possessed a thermally driven dynamo. The thermal conductivity of core materials is a significant parameter of the dynamo. The lunar core composition is thought to be iron or iron-alloyed with some light elements (e.g., S, P, Si, and C), but its transport properties remain uncertain. We measured the electrical resistivity of iron and Fe-3 wt%P alloys at 5 GPa and high temperatures. Apart from the quasi four-point technique, the four-probe van der Pauw technique was also employed to measure the resistivity of pure iron. Adding similar to 3 wt% phosphorus to iron slightly increases the resistivity at 5 GPa and 1000-1500 K due to the impurity effect. The resistivity of Fe-3 wt%P alloys increases at the onset of melting. Via the Wiedemann-Franz law, the thermal conductivity at the lunar core-mantle boundary (CMB) is estimated to be 28.6-34.2 Wm(-1)K(-1) for a light-element free core and 31.5 +/- 1.9 Wm(-1)K(-1) for a phosphorus-bearing (similar to 3 wt% P) core. Therefore, small amounts of phosphorus in the lunar core slightly impact its thermal conductivity. The estimated conductive heat flow across the lunar CMB varies from 4.5 to 5.7 GW, and the adiabatic heat flux varies from 3.3 to 4.2 mW/m(2), depending on the core's composition (Fe or Fe-3 wt%P). Integrating our results with previous lunar core evolution models, we suggest that a thermally driven dynamo persisted until 3.63-3.88 Ga ago.
View Full Publication open_in_new
Abstract
Using density functional perturbation theory, we computed the phonon frequencies and Raman and IR activities of hafnia polymorphs (P4(2)nmc, Pca2(1), Pmn2(1), Pbca OI, brookite, and baddeleyite) for phase identification. We investigated the evolution of Raman and IR activities with respect to epitaxial strain and provide plots of frequency differences as a function of strain for experimental calibration and identification of the strain state of the sample. We found Raman signatures of different hafnia polymorphs: omega ( A(1g) ) = 300 cm(-1) for P4(2)nmc, omega (A( 1)) = 343 cm(-1) for Pca2(1), omega ( B-2) = 693 cm(-1) for Pmn2(1), omega (A( g)) = 513 cm(-1) for Pbca (OI), omega (A(g)) = 384 cm(-1) for brookite, and omega (A(g)) = 496 cm(-1) for baddeleyite. We also identified the Raman B-1g mode, an anti-phase vibration of dipole moments [omega (B-1g) = 758 cm(-1) for OI and omega ( B-1g ) = 784 cm(-1) for brookite], as the Raman signature of antipolar Pbca structures. We calculated a large splitting between the longitudinal optical and transverse optical modes [delta omega(LO) - TO ( A(1)(z)) = 255 cm(-1) in Pca2(1) and delta omega( LO) (- TO) ( A 1 ) = 263 cm(-1) in Pmn2(1)] to the same order as those observed in perovskite ferroelectrics and related them to the anomalously large Born effective charges of Hf atoms [ Z * ( Hf ) = 5.54]. Published under an exclusive license by AIP Publishing.
View Full Publication open_in_new
Abstract
We report a carbon-boron clathrate with composition 2 La@B6C6 (LaB3C3). Like recently reported SrB3C3,([1]) single-crystal X-ray diffraction and computational modelling indicate that the isostructural La member crystallizes in the cubic bipartite sodalite structure (Type-VII clathrate) with La atoms encapsulated within truncated octahedral cages composed of alternating carbon and boron atoms. The covalent nature of the B-C bonding results in a hard, incompressible framework, and owing to the balanced electron count, La3+[B3C3](3-) exhibits markedly improved pressure stability and is a semiconductor with an indirect band gap predicted near 1.3 eV. A variety of different guest atoms may potentially be substituted within Type-VII clathrate cages, presenting opportunities for a large family of boron-stabilized, carbon-based clathrates with ranging physical properties.
View Full Publication open_in_new
Abstract
On the basis of the van der Pauw method, we developed a new technique for measuring the electrical resistivity of metals in a cubic multi-anvil high-pressure apparatus. Four electrode wires were introduced into the sample chamber and in contact with the pre-pressed metal disk on the periphery. The sample temperature was measured with a NiCr-NiSi (K-type) thermocouple, which was separated from the sample by a thin hexagonal boron nitride layer. The electrodes and thermocouple were electrically insulated from each other and from the heater by an alumina tube as well. Their leads were in connection with cables through the gap between the tungsten carbide anvils. We performed experiments to determine the temperature dependence of electrical resistivity of pure iron at 3 and 5 GPa. The experiments produce reproducible measurements and the results provide an independent check on electrical resistivity data produced by other methods. The new technique provides reliable electrical resistivity measurements of metallic alloys and compounds at high pressure and temperature.
View Full Publication open_in_new
Abstract
A strong correlation exists between the average slip rate by short-term slow slip events (SSEs) and changes in the slab geometry in Cascadia and Nankai. The generation of short-term SSEs is generally assumed to be related to the presence of fluids and we investigate the hypothesis that fluids released by metamorphic dehydration reactions migrate in 3-D due to complex slab geometry. The associated along-arc focusing of fluid flux is likely to cause higher average slip rate in certain patches. To test this hypothesis, we investigate how fluid migration is modified by along-strike changes in slab geometry. We use a numerical model of two-phase flow in subduction zones. In this model fluids migrate subparallel to the slab surface due to the anisotropic permeability inside a serpentinite layer just above the slab. In 3-D, we find that fluids migrate in the maximum-dip direction of the slab, rather than subparallel to the plate motion. As a result fluid paths concentrate with increasing porosity where the slab has a convex shape (and diverge with decreasing porosity where it has a concave shape). These results suggest that regions with a high average slip rate by short-term SSEs in Cascadia and Nankai can be explained by 3-D focusing of fluid migration. We predict a defocusing of fluids below the Kii Channel, Nankai, which may be the reason for the observed small slip by short-term SSEs in this location.
View Full Publication open_in_new
Abstract
We report the synthesis of bulk, highly oriented, crystalline 4H hexagonal silicon (4H-Si), through a metastable phase transformation upon heating the single-crystalline Si-24 allotrope. Remarkably, the resulting 4H-Si crystallites exhibit an orientation relationship with the Si-24 crystals, indicating a structural relationship between the two phases. Optical absorption measurements reveal that 4H-Si exhibits an indirect band gap near 1.2 eV, in agreement with first principles calculations. The metastable crystalline transition pathway provides a novel route to access bulk crystalline 4H-Si in contrast to previous transformation paths that yield only nanocrystalline-disordered materials.
View Full Publication open_in_new
Abstract
Knowledge of the sound velocity of core materials is essential to explain the observed anomalously low shear wave velocity (V-S) and high Poisson's ratio (sigma) in the solid inner core. To date, neither V-S nor sigma of Fe and Fe-Si alloy have been measured under core conditions. Here, we present V-S and sigma derived from direct measurements of the compressional wave velocity, bulk sound velocity, and density of Fe and Fe-8.6 wt%Si up to similar to 230 GPa and similar to 5400 K. The new data show that neither the effect of temperature nor incorporation of Si would be sufficient to explain the observed low V-S and high sigma of the inner core. A possible solution would add carbon (C) into the solid inner core that could further decrease V-S and increase sigma. However, the physical property-based Fe-Si-C core models seemingly conflict with the partitioning behavior of Si and C between liquid and solid Fe.
View Full Publication open_in_new
Abstract
Subduction of oceanic lithosphere transports surface H2O into the mantle. Recent studies show that dense SiO2 in the form of stishovite, an abundant mineral in subducted oceanic crust at depths greater than -270 km, has the potential to host and transport a considerable amount of H2O into the lower mantle, but the H2O storage capacity of SiO2 phases at high pressure and temperature remains uncertain. We investigate the hydration of stishovite and its higher-pressure polymorphs, beta-stishovite and seifertite, with in situ X-ray diffraction experiments at high pressures and temperatures. The H2O contents in SiO2 phases are quantified based on observed increases in unit cell volume relative to the anhydrous SiO2 system. Density functional theory (DFT) computations permit calibration of water content as a function of volume change based on interstitial substitution of H2O. Regression of our experimental data indicates an H2O storage capacity in stishovite of -3.5 wt% in the transition zone and shallow lower mantle, decreasing to about 0.8 wt% at the base of the mantle. We find that SiO2-bearing subducted oceanic crust can accommodate all the H2O in slab lithosphere that survives sub-arc dehydration. Hydration of silica phases in subducted oceanic crust and their unparalleled capacity to host significant amounts of H2O even at high mantle temperatures provides a unique mechanism for transport and storage of water in the deepest mantle. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
View Full Publication open_in_new
Abstract
We introduce and describe a new software infrastructure TerraFERMA, the Transparent Finite Element Rapid Model Assembler, for the rapid and reproducible description and solution of coupled multiphysics problems. The design of TerraFERMA is driven by two computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced, and modified in a manner such that the best ideas in computation and Earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high-level problem description (FEniCS), composable solvers for coupled multiphysics problems (PETSc), and an options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an interface that organizes the scientific and computational choices required in a model into a single options file from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible, while still permitting the individual researcher considerable latitude in model construction. TerraFERMA solves partial differential equations using the finite element method. It is particularly well suited for nonlinear problems with complex coupling between components. TerraFERMA is open-source and available at http://terraferma. github. io, which includes links to documentation and example input files.
View Full Publication open_in_new
Abstract
The origin of major volatiles nitrogen, carbon, hydrogen, and sulfur in planets is critical for understanding planetary accretion, differentiation, and habitability. However, the detailed process for the origin of Earth's major volatiles remains unresolved. Nitrogen shows large isotopic fractionations among geochemical and cosmochemical reservoirs, which could be used to place tight constraints on Earth's volatile accretion process. Here we experimentally determine N-partitioning and -isotopic fractionation between planetary cores and silicate mantles. We show that the core/mantle N-isotopic fractionation factors, ranging from -4 to +10, are strongly controlled by oxygen fugacity, and the core/mantle N-partitioning is a multi-function of oxygen fugacity, temperature, pressure, and compositions of the core and mantle. After applying N-partitioning and -isotopic fractionation in a planetary accretion and core-mantle differentiation model, we find that the N-budget and -isotopic composition of Earth's crust plus atmosphere, silicate mantle, and the mantle source of oceanic island basalts are best explained by Earth's early accretion of enstatite chondrite-like impactors, followed by accretion of increasingly oxidized impactors and minimal CI chondrite-like materials before and during the Moon-forming giant impact. Such a heterogeneous accretion process can also explain the carbon-hydrogen-sulfur budget in the bulk silicate Earth. The Earth may thus have acquired its major volatile inventory heterogeneously during the main accretion phase.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 582
  • Page 583
  • Page 584
  • Page 585
  • Current page 586
  • Page 587
  • Page 588
  • Page 589
  • Page 590
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025