Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Part V of the evolutionary system of mineralogy explores phases produced by aqueous alteration, metasomatism, and/or thermal metamorphism-relicts of ancient processes that affected virtually all asteroids and that are preserved in the secondary mineralogy of meteorites. We catalog 166 historical natural kinds of minerals that formed by alteration in the parent bodies of chondritic and non-chondritic meteorites within the first 20 Ma of the solar system. Secondary processes saw a dramatic increase in the chemical and structural diversity of minerals. These phases incorporate 41 different mineral-forming elements, including the earliest known appearances of species with essential Co, Ge, As, Nb, Ag, Sn, Te, Au, Hg, Pb, and Bi. Among the varied secondary meteorite minerals are the earliest known examples of halides, arsenides, tellurides, sulfates, carbonates, hydroxides, and a wide range of phyllosilicates.
View Full Publication open_in_new
Abstract
The tectonic regime of the early Earth has proven enigmatic due to a scarcity of preserved continental crust, yet how early continents were generated is key to deciphering Earth's evolution. Here we show that a compilation of data from 4.3 to 3.4 Ga igneous and detrital zircons records a secular shift to higher Hf-176/Hf-177 after similar to 3.8-3.6 Ga. This globally evident shift indicates that continental crust formation before similar to 3.8-3.6 Ga largely occurred by internal reworking of long-lived mafic protocrust, whereas later continental crust formation involved extensive input of relatively juvenile magmas, which were produced from rapid remelting of oceanic lithosphere. We propose that this secular shift in the global hafnium isotope record reflects a gradual yet widespread transition from stagnant-lid to mobile-lid tectonics on the early Earth.
View Full Publication open_in_new
Abstract
Transition metal cofactors are crucial for many biological processes. Despite being primarily considered to be toxic, the transition metal cadmium (Cd) was discovered to be a substitute cofactor for zinc (Zn) in photosynthetic carbon fixation pathways of marine diatoms. However, it is not known how conditions in the geosphere impacted Cd availability and its incorporation as an alternative metal cofactor for phytoplankton. We employed mineral chemistry network analysis to investigate which geochemical factors may have influenced the availability of Cd and Zn during the putative time period that the alternative Cd-based pathway evolved. Our results show that Zn minerals are more chemically diverse than are Cd minerals, but Zn- and Cd-containing minerals have similar network centrality values when specifically considering sulfur (S)-containing species. Cadmium and Zn sulfides are the most common Cd- and Zn-containing mineral species over the past 500 million years. In particular, the Cd and Zn sulfides, respectively greenockite and sphalerite, were highly abundant during this time period. Furthermore, S-containing Cd and Zn minerals are commonly co-located in geologic time, allowing them to be weathered and transported to the ocean in tandem, rather than from separate sources. We suggest that the simultaneous weathering of Cd and Zn sulfides allowed for Cd to be a bioavailable direct substitute for Zn in protein complexes during periods of Zn depletion. The biogeochemical cycles of Zn and Cd exemplify the importance of the coevolution of the geosphere and biosphere in shaping primary production in the modern ocean.
View Full Publication open_in_new
Abstract
The subsurface is among Earth's largest biomes, but the extent to which microbial communities vary across tectonic plate boundaries or interact with subduction-scale geological processes remains unknown. Here we compare bacterial community composition with deep-subsurface geochemistry from 21 hot springs across the Costa Rican convergent margin. We find that cation and anion compositions of the springs reflect the dip angle and position of the underlying tectonic structure and also correlate with the bacterial community. Co-occurring microbial cliques related to cultured chemolithoautotrophs that use the reverse tricarboxylic acid cycle (rTCA) as well as abundances of metagenomic rTCA genes correlate with concentrations of slab-volatilized carbon. This, combined with carbon isotope evidence, suggests that fixation of slab-derived CO2 into biomass may support a chemolithoautotrophy-based subsurface ecosystem. We calculate that this forearc subsurface biosphere could sequester 1.4 x 10(9) to 1.4 x 10(10) mol of carbon per year, which would decrease estimates of the total carbon delivered to the mantle by 2 to 22%. Based on the observed correlations, we suggest that distribution and composition of the subsurface bacterial community are probably affected by deep tectonic processes across the Costa Rican convergent margin and that, by sequestering carbon volatilized during subduction, these chemolithoautotrophic communities could in turn impact the geosphere.
View Full Publication open_in_new
Abstract
The evolution of Earth's major geochemical reservoirs over similar to 4.5 x 10(9) years remains a matter of intense study. Geochemical tools in the form of short-lived radionuclide isotope ratios (Nd-142/Nd-144 and W-182/W-184) have expanded our understanding of the geochemical variability in both the modern and ancient Earth. Here, we present Nd-142/Nd-144 and W-182/W-184 data from a suite of rocks from the Slave craton that formed over a 1.1 x 10(9) year time span in the Archean. The rocks have consistently high W-182/W-184, yet(142)Nd/Nd-144 that is lower than bulk mantle and increased over time. The declining variability in(142)Nd/Nd-144 with time likely reflects the homogenization of compositional heterogeneities in the silicate Earth that were initially created by differentiation events that occurred prior to 4.2 Ga. The elevated W-182/W-184 recorded in the Slave samples help refine models for the broader W-isotope evolution of the silicate Earth. Globally, the Archean mantle that formed continental crust was dominated by W-182/W-184 elevated by some 10-15 ppm compared to the value for the modern upper mantle. The Slave craton lacks significant volumes of komatiite yet has elevated W-182/W-184 until 2.9 Ga. This observation, combined with the presence of other komatiite suites that have low W-182/W-184, suggests that deep-seated sources contributed low W-182/W-184 in the Archean Earth. The regional variability in W-182/W-184 may be explained by invoking chemical and/or isotopic exchange between a well-mixed silicate Earth and the core or a portion of the lower mantle whose W-isotope composition has been influenced by interaction with the core.
View Full Publication open_in_new
Abstract
Curiosity, the Mars Science Laboratory (MSL) rover, landed on Mars in August 2012 to investigate the similar to 3.5-billion-year-old (Ga) fluvio-lacustrine sedimentary deposits of Aeolis Mons (informally known as Mount Sharp) and the surrounding plains (Aeolis Palus) in Gale crater. After nearly nine years, Curiosity has traversed over 25 km, and the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on-board Curiosity has analyzed 30 drilled rock and three scooped soil samples to date. The principal strategic goal of the mission is to assess the habitability of Mars in its ancient past. Phyllosilicates are common in ancient Martian terrains dating to similar to 3.5-4 Ga and were detected from orbit in some of the lower strata of Mount Sharp. Phyllosilicates on Earth are important for harboring and preserving organics. On Mars, phyllosilicates are significant for exploration as they are hypothesized to be a marker for potential habitable environments. CheMin data demonstrate that ancient fluvio-lacustrine rocks in Gale crater contain up to similar to 35 wt. % phyllosilicates. Phyllosilicates are key indicators of past fluid-rock interactions, and variation in the structure and composition of phyllosilicates in Gale crater suggest changes in past aqueous environments that may have been habitable to microbial life with a variety of possible energy sources.
View Full Publication open_in_new
Abstract
Earth surface redox conditions are intimately linked to the co-evolution of the geosphere and biosphere. Minerals provide a record of Earth's evolving surface and interior chemistry in geologic time due to many different processes (e.g. tectonic, volcanic, sedimentary, oxidative, etc.). Here, we show how the bipartite network of minerals and their shared constituent elements expanded and evolved over geologic time. To further investigate network expansion over time, we derive and apply a novel metric (weighted mineral element electronegativity coefficient of variation; wMEE(CV)) to quantify intra-mineral electronegativity variation with respect to redox. We find that element electronegativity and hard soft acid base (HSAB) properties are central factors in mineral redox chemistry under a wide range of conditions. Global shifts in mineral element electronegativity and HSAB associations represented by wMEE(CV) changes at 1.8 and 0.6 billion years ago align with decreased continental elevation followed by the transition from the intermediate ocean and glaciation eras to post-glaciation, increased atmospheric oxygen in the Phanerozoic, and enhanced continental weathering. Consequently, network analysis of mineral element electronegativity and HSAB properties reveal that orogenic activity, evolving redox state of the mantle, planetary oxygenation, and climatic transitions directly impacted the evolving chemical complexity of Earth's crust.
View Full Publication open_in_new
Abstract
Analysis of manganese mineral occurrences and valence states demonstrate oxidation of Earth's crust through time. Changes in crustal redox state are critical to Earth's evolution, but few methods exist for evaluating spatially averaged crustal redox state through time. Manganese (Mn) is a redox-sensitive metal whose variable oxidation states and abundance in crustal minerals make it a useful tracer of crustal oxidation. We find that the average oxidation state of crustal Mn occurrences has risen in the last 1 billion years in response to atmospheric oxygenation following a 66 +/- 1 million-year time lag. We interpret this lag as the average time necessary to equilibrate the shallow crust to atmospheric oxygen fugacity. This study employs large mineralogical databases to evaluate geochemical conditions through Earth's history, and we propose that this and other mineral data sets form an important class of proxies that constrain the evolving redox state of various Earth reservoirs.
View Full Publication open_in_new
Abstract
The complexities of chemical composition and crystal structure are fundamental characteristics of minerals that have high relevance to the understanding of their stability, occurrence and evolution. This review summarises recent developments in the field of mineral complexity and outlines possible directions for its future elaboration. The database of structural and chemical complexity parameters of minerals is updated by H-correction of structures with unknown H positions and the inclusion of new data. The revised average complexity values (arithmetic means) for all minerals are 3.54(2) bits/atom and 345(10) bits/cell (based upon 4443 structure reports). The distributions of atomic information amounts, I-chem(G) and I-str(G), versus the number of mineral species fit the normal modes, whereas the distributions of total complexities, I-chem(G,total) and I-str(G,total), along with numbers of atoms per formula and per unit cell are log normal. The three most complex mineral species known today are ewingite, morrisonite and ilmajokite, all either discovered or structurally characterised within the last five years. The most important complexity-generating mechanisms in minerals are: (1) the presence of isolated large clusters; (2) the presence of large clusters linked together to form three-dimensional frameworks; (3) formation of complex three-dimensional modular frameworks; (4) formation of complex modular layers; (5) high hydration state in salts with complex heteropolyhedral units; and (6) formation of ordered superstructures of relatively simple structure types. The relations between symmetry and complexity are considered. The analysis of temporal dynamics of mineralogical discoveries since 1875 with the step of 25 years show the increasing chemical and structural complexities of human knowledge of the mineral kingdom in the history of mineralogy. In the Earth's history, both diversity and complexity of minerals experience dramatic increases associated with the formation of Earth's continental crust, initiation of plate tectonics and the Great Oxidation event.
View Full Publication open_in_new
Abstract
Detrital chromites are commonly reported within Archean metasedimentary rocks, but have thus far garnered little attention for use in provenance studies. Systematic variations of Cr-Fe spinel mineral chemistry with changing tectonic setting have resulted in the extensive use of chromite as a petrogenetic indicator, and so detrital chromites represent good candidates to investigate the petrogenesis of eroded Archean mafic and ultramafic crust. Here, we report the compositions of detrital chromites within fuchsitic (Cr-muscovite rich) metasedimentary rocks from the Jack Hills, situated within the Narryer Terrane, Yilgarn Craton, Western Australia, which are geologically renowned for hosting Hadean (>4000 Ma) zircons. We highlight signatures of metamorphism, including highly elevated ZnO and MnO, coupled with lowered Mg# in comparison with magmatic chromites, development of pitted domains, and replacement of primary inclusions by phases that are part of the metamorphic assemblages within host metasedimentary rocks. Oxygen isotope compositions of detrital chromites record variable exchange with host metasedimentary rocks. The variability of metamorphic signatures between chromites sampled only meters apart further indicates that modification occurred in situ by interaction of detrital chromites with metamorphic fluids and secondary mineral assemblages. Alteration probably occurred during upper greenschist to lower amphibolite facies metamorphism and deformation of host metasedimentary rocks at similar to 2650 Ma. Regardless of metamorphic signatures, sampling location or grain shape, chromite cores yield a consistent range in Cr#. Although other key petrogenetic indices, such as Fe2O3 and TiO2 contents, are complicated in Jack Hills chromites by mineral non-stoichiometry and secondary mobility within metasedimentary rocks, we demonstrate that the Cr# of chromite yields significant insights into their provenance. Importantly, moderate Cr# (typically 55-70) precludes a komatiitic origin for the bulk of chromites, reflecting a dearth of komatiites and intrusive equivalents within the erosional catchment of the Jack Hills metasedimentary units. We suggest that the Cr# of Jack Hills chromite fits well with chromites derived from layered intrusions, and that a single layered intrusion may account for the observed chemical compositions of Jack Hills detrital chromites. Where detailed characterization of key metamorphic signatures is undertaken, detrital chromites preserved within Archean metasedimentary rocks may therefore yield valuable information on the petrogenesis and geodynamic setting of poorly preserved mafic and ultramafic crust.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 538
  • Page 539
  • Page 540
  • Page 541
  • Current page 542
  • Page 543
  • Page 544
  • Page 545
  • Page 546
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025