Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Diamonds are unrivalled in their ability to record the mantle carbon cycle and mantle fO(2) over a vast portion of Earth's history. Diamonds' inertness and antiquity means their carbon isotopic characteristics directly reflect their growth environment within the mantle as far back as similar to 3.5 Ga. This paper reports the results of a thorough secondary ion mass spectrometry (SIMS) carbon isotope and nitrogen concentration study, carried out on fragments of 144 diamond samples from various locations, from similar to 3.5 to 1.4 Ga for P [peridotitic]-type diamonds and 3.0 to 1.0 Ga for E [eclogitic]-type diamonds. The majority of the studied samples were from diamonds used to establish formation ages and thus provide a direct connection between the carbon isotope values, nitrogen contents and the formation ages. In total, 908 carbon isotope and nitrogen concentration measurements were obtained. The total delta C-13 data range from -17.1 to -1.9 parts per thousand (P = -8.4 to -1.9 parts per thousand; E = -17.1 to -2.1 parts per thousand) and N contents range from 0 to 3073 at. ppm (P 0 to 3073 at. ppm; E = 1 to 2661 at. ppm). In general, there is no systematic variation with time in the mantle carbon isotope record since > 3 Ga. The mode in delta C-13 of peridotitic diamonds has been at similar to 5 (+/- 2) parts per thousand since the earliest diamond growth similar to 3.5 Ga, and this mode is also observed in the eclogitic diamond record since similar to 3 Ga. The skewness of eclogitic diamonds' delta C-13 distributions to more negative values, which the data establishes began around 3 Ga, is also consistent through time, with no global trends apparent.
View Full Publication open_in_new
Abstract
A new diamond-anvil cell apparatus for in situ synchrotron X-ray diffraction measurements of liquids and glasses, at pressures from ambient to 5 GPa and temperatures from ambient to 1300 K, is reported. This portable setup enables in situ monitoring of the melting of complex compounds and the determination of the structure and properties of melts under moderately high pressure and high temperature conditions relevant to industrial processes and magmatic processes in the Earth's crust and shallow mantle. The device was constructed according to a modified Bassett-type hydrothermal diamond-anvil cell design with a large angular opening (theta = 95 degrees). This paper reports the successful application of this device to record in situ synchrotron X-ray diffraction of liquid Ga and synthetic PbSiO3 glass to 1100 K and 3 GPa.
View Full Publication open_in_new
Abstract
We present a theoretical model of the stability and migration of carbonate-rich melts to test whether they can explain seismic low-velocity layers (LVLs) observed above stalled slabs in several convergent tectonic settings. The LVLs, located atop the mantle transition zone, contain small (similar to 1 vol%) amounts of partial melt, possibly derived from melting of subducted carbonate-bearing oceanic crust. Petrological and geochemical evidence from inclusions in superdeep diamonds supports the existence of slab-derived carbonate melt, which may potentially explain the origin of the observed melt in the LVL. However, the presumptive reducing nature of the ambient mantle can be an impediment to the stability of carbonated melt. To reconcile this apparent contradiction, we test the stability and migration rates of carbonate-rich melts atop a stalled slab as a function of melt percolation, redox freezing, amount of carbon supplied by subduction, and the metallic Fe concentration in the mantle. Our results demonstrate that carbonaterich melts in the LVL can potentially survive redox freezing over long geological time scales. We also show that the amount of subducted carbon exerts a stronger influence on the stability of carbonate melt than does the mantle redox condition. Concentration dependent melt density leads to rapid melt propagation through channels while a constant melt density causes melt to migrate as a planar front. Our calculations suggest that the LVLs can sequester significant fractions of carbon transported to the mantle by subduction. (C) 2019 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
The "wet" silicate solidus of mantle peridotite defines the initial melting temperature of Earth's mantle under water-saturated conditions and the second critical endpoint (SCEP) marks the high P-T end of the wet solidus. However, the location of the wet solidus has remained an outstanding issue for over 50 years and the position of the SCEP is hotly debated. Published wet solidi show a difference of 200-600 degrees C at a given pressure while reported SCEPs range from <4 to >6 GPa. Using a large-volume multianvil apparatus, we investigated the water-saturated melting behavior of a fertile peridotite at 3-6 GPa, 950-1200 degrees C, and obtained well-preserved quenched materials. On the basis of textures and compositions of the quenched materials, we bracket the wet solidus to between 950 degrees C and 1000 degrees C at 3 GPa and the SCEP between 3 and 4 GPa. Combining our experimental results with seismologic and petrologic observations, we propose that the lithosphere-asthenosphere boundary in subduction zones should be constrained by the wet solidus and emphasize the role of a deep hydrous partial-melting zone (DHPMZ) on magma genesis within the mantle wedge. We suggest that the DHPMZ is a source of hydrous melts to the primary melting zone in the mantle wedge and that the position of the volcanic front and its magma production rate may largely be controlled by melting and melt segregation processes within the DHPMZ. Our experimental results also suggest that high-magnesian magmas (e.g., boninite, picrite, and komatiite) could be formed at conditions representative of subduction zones.
View Full Publication open_in_new
Abstract
High pressure-temperature experiments provide information on the phase diagrams and physical characteristics of matter at extreme conditions and offer a synthesis pathway for novel materials with useful properties. Experiments recreating the conditions of planetary interiors provide important constraints on the physical properties of constituent phases and are key to developing models of planetary processes and interpreting geophysical observations. The laser-heated diamond anvil cell (DAC) is currently the only technique capable of routinely accessing the Earth's lower-mantle geotherm for experiments on non-metallic samples, but large temperature uncertainties and poor temperature stability limit the accuracy of measured data and prohibits analyses requiring long acquisition times. We have developed a novel internal resistive heating (IRH) technique for the DAC and demonstrate stable heating of non-metallic samples up to 3000 K and 64 GPa, as confirmed by in situ synchrotron x-ray diffraction and simultaneous spectroradiometric temperature measurement. The temperature generated in our IRH-DAC can be precisely controlled and is extremely stable, with less than 20 K variation over several hours without any user intervention, resulting in temperature uncertainties an order of magnitude smaller than those in typical laser-heating experiments. Our IRH-DAC design, with its simple geometry, provides a new and highly accessible tool for investigating materials at extreme conditions. It is well suited for the rapid collection of high-resolution P-V-T data, precise demarcation of phase boundaries, and experiments requiring long acquisition times at high temperature. Our IRH technique is ideally placed to exploit the move toward coherent nano-focused x-ray beams at next-generation synchrotron sources. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
View Full Publication open_in_new
Abstract
Geophysical and geochemical evidence suggests that Earth's core is predominantly made of iron (or iron-nickel alloy) with several percent of light elements. However, Earth's solid inner core transmits shear waves at a much lower velocity than expected from mineralogical models that are consistent with geochemical constraints. Here we investigate the effect of hydrogen on the elastic properties of iron and iron-silicon alloys using ab initio molecular dynamic simulations. We find that these H-bearing alloys maintain a superionic state under inner-core conditions and that their shear moduli exhibit a strong shear softening due to the superionic effect, with a corresponding reduction in V-S. Several hcp-iron-silicon-hydrogen compositions can explain the observed density, V-P, V-S, and Poisson's ratio of the inner core simultaneously. Our results indicate that hydrogen is a significant component of the Earth's core, and that it may contain at least four ocean masses of water. This indicates that the Earth may have accreted wet and obtained its water from chondritic and/or nebular materials before or during core formation. (C) 2021 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
A seismic low velocity layer (LVL) above the mantle transition zone (MTZ), often thought to be caused by volatile-induced melting, can significantly modulate planetary volatile cycles. In this work, we show that an LVL observed beneath northeast Asia is characterized by small, 0.8 +/- 0.5 vol%, average degrees of partial melting. Seismically derived P-T conditions of the LVL indicate that slab-derived CO2, possibly combined with small amounts of H2O, is necessary to induce melting. Modeling the reactive infiltration instability of the melt in a stationary mantle above a stalled slab, we demonstrate that the volatile-rich melt slowly rises above the stalled slab in the MTZ, with percolation velocities of 200-500 mu m/yr. The melt remains stable within the LVL for this geologically significant period of time, potentially transferring up to 52 Mt/yr of CO2 from the subducting slab to the mantle for an LVL similar in areal extent (3.4x106km2) to the northeast Asian LVL. Reaction between the melt channels and the LVL mantle precipitates up to 200 ppmw solid C in localized zones. Using the inferred small melt volume fraction to model trace element abundances and isotopic signatures, we show that interaction between this melt and the surrounding mantle can over the long-term produce rocks bearing a HIMU like geochemical signature.
View Full Publication open_in_new
Abstract
We report ab initio atomistic simulations of hydrous silicate melts under deep upper mantle to shallow lower mantle conditions and use them to parameterise density and viscosity across the ternary system MgO-SiO2-H2O (MSH). On the basis of phase relations in the MSH system, primary hydrous partial melts of the mantle have 40-50 mol% H2O. Our results show that these melts will be positively buoyant at the upper and lower boundaries of the mantle transition zone except in very iron-rich compositions, where greater than or similar to 75% Mg is substituted by Fe. Hydrous partial melts will also be highly inviscid. Our results indicate that if melting occurs when wadsleyite transforms to olivine at 410 km, melts will be buoyant and ponding of melts is unexpected. Box models of mantle circulation incorporating the upward mobility of partial melts above and below the transition zone suggest that the upper mantle becomes efficiently hydrated at the expense of the transition zone such that large differences in H2O concentration between the upper mantle, transition zone and lower mantle are difficult to maintain on timescales of mantle recycling. The MORB source mantle with similar to 0.02-0.04 wt% H2O may be indicative of the H2O content of the transition zone and lower mantle, resulting in a bulk mantle H2O content of the order 0.5 to 1 ocean mass, which is consistent with geochemical constraints and estimates of subduction ingassing. (c) 2022 The Author(s). Published by Elsevier B.V.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 541
  • Page 542
  • Page 543
  • Page 544
  • Current page 545
  • Page 546
  • Page 547
  • Page 548
  • Page 549
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025