Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Tamarack Intrusive Complex (1105 +/- 1.2 Ma), in northeastern Minnesota, occurs within the Midcontinent rift system and hosts potentially economic Ni-Cu-(PGE) mineralization. The system represents "conduit-style" mineralization and with 1.3 wt % Ni, 0.7 wt % Cu, 0.3 ppm Pt, and 0.25 ppm Pd, is similar in many aspects to the Eagle deposit in Michigan. Sulfur, O, and Os isotopes have been used to evaluate the role of crustal contamination in promoting sulfide liquid saturation. All of the types of mineralization in the Tamarack Intrusive Complex are characterized by delta S-34 values between -0.2 and 2.8 parts per thousand, values that are not strongly anomalous relative to uncontaminated mantle values near 0 parts per thousand. The values are very similar to those from the Eagle deposit, but contrast sharply with values of disseminated sulfides in intrusions of the Duluth Complex and Crystal Lake Gabbro, which may be as elevated as 17 parts per thousand. Initial Os-187/Os-188 ratios in the Tamarack intrusive Complex are between 4 and 44% higher than the same ratio of the undepleted primitive mantle at 1105 Ma and correspond to gamma Os values for all magmatic sulfide types from the Tamarack Intrusive Complex ranging from 10 to 92. These values are consistent with crustal contamination but for S, the isotopic ratios are remarkably lower than those from mineralization in the Duluth Complex, where initial Os-187/Os-188 ratios are more than 110% higher than that of primitive mantle and gamma os values may be in excess of 1,000. Olivine from an unmineralized but sparsely serpentinized portion of the Tamarack Intrusive Complex has O isotope compositions from 5.2 to 5.5 parts per thousand, indicating a fraction of a percent crustal contamination of the parental magma.
View Full Publication open_in_new
Abstract
Information-rich attributes of minerals reveal their physical, chemical, and biological modes of origin in the context of planetary evolution, and thus they provide the basis for an evolutionary system of mineralogy. Part III of this system considers the formation of 43 different primary crystalline and amorphous phases in chondrules, which are diverse igneous droplets that formed in environments with high dust/gas ratios during an interval of planetesimal accretion and differentiation between 4566 and 4561 Ma. Chondrule mineralogy is complex, with several generations of initial droplet formation via various proposed heating mechanisms, followed in many instances by multiple episodes of reheating and partial melting. Primary chondrule mineralogy thus reflects a dynamic stage of mineral evolution, when the diversity and distribution of natural condensed solids expanded significantly.
View Full Publication open_in_new
Abstract
Geological pathways for the recycling of Earth's surface materials into the mantle are both driven and obscured by plate tectonics(1-3). Gauging the extent of this recycling is difficult because subducted crustal components are often released at relatively shallow depths, below arc volcanoes(4-7). The conspicuous existence of blue boronbearing diamonds (type IIb)(8,9) reveals that boron, an element abundant in the continental and oceanic crust, is present in certain diamond-forming fluids at mantle depths. However, both the provenance of the boron and the geological setting of diamond crystallization were unknown. Here we show that boron-bearing diamonds carry previously unrecognized mineral assemblages whose high-pressure precursors were stable in metamorphosed oceanic lithospheric slabs at depths reaching the lower mantle. We propose that some of the boron in seawater-serpentinized oceanic lithosphere is subducted into the deep mantle, where it is released with hydrous fluids that enable diamond growth(10). Type IIb diamonds are thus among the deepest diamonds ever found and indicate a viable pathway for the deep-mantle recycling of crustal elements.
View Full Publication open_in_new
Abstract
Minerals preserve records of the physical, chemical, and biological histories of their origins and subsequent alteration, and thus provide a vivid narrative of the evolution of Earth and other worlds through billions of years of cosmic history. Mineral properties, including trace and minor elements, ratios of isotopes, solid and fluid inclusions, external morphologies, and other idiosyncratic attributes, represent information that points to specific modes of formation and subsequent environmental histories-information essential to understanding the co-evolving geosphere and biosphere. This perspective suggests an opportunity to amplify the existing system of mineral classification, by which minerals are defined solely on idealized end-member chemical compositions and crystal structures. Here we present the first in a series of contributions to explore a complementary evolutionary system of mineralogy-a classification scheme that links mineral species to their paragenetic modes.
View Full Publication open_in_new
Abstract
Ancient rock samples are limited, hindering the investigation of the processes operative on the Earth early in its history. Here we present a detailed study of well-exposed crustal remnants in the central Slave craton that formed over a 1 billion year magmatic history. The tonalitic-granodioritic gneisses analysed here are broadly comparable to common suites of rocks found in Archean cratons globally. Zircon Hf isotope data allow us to identify a major change positive epsilon Hf starting at similar to 3.55 Ga. The crust production processes and spatial distribution of isotopic compositions imply variable interaction with older crust, similar to the relationships seen in modern tectonic settings; specifically, long-lived plate margins. A majority of the Slave craton might have been formed by a similar mechanism.
View Full Publication open_in_new
Abstract
Neoproterozoic West African diamonds contain sulfide inclusions with mass-independently fractionated (MIF) sulfur isotopes that trace Archean surficial signatures into the mantle. Two episodes of subduction are recorded in these West African sulfide inclusions: thickening of the continental lithosphere through horizontal processes around 3 billion years ago and reworking and diamond growth around 650 million years ago. We find that the sulfur isotope record in worldwide diamond inclusions is consistent with changes in tectonic processes that formed the continental lithosphere in the Archean. Slave craton diamonds that formed 3.5 billion years ago do not contain any MIF sulfur. Younger diamonds from the Kaapvaal, Zimbabwe, and West African cratons do contain MIF sulfur, which suggests craton construction by advective thickening of mantle lithosphere through conventional subduction-style horizontal tectonics.
View Full Publication open_in_new
Abstract
The evolutionary system of mineralogy relies on varied physical and chemical attributes, including trace elements, isotopes, solid and fluid inclusions, and other information-rich characteristics, to understand processes of mineral formation and to place natural condensed phases in the deep-time context of planetary evolution. Part I of this system reviewed the earliest refractory phases that condense at T > 1000 K within the turbulent expanding and cooling atmospheres of highly evolved stars. Part II considers the subsequent formation of primary crystalline and amorphous phases by condensation in three distinct mineral-forming environments, each of which increased mineralogical diversity and distribution prior to the accretion of planetesimals >4.5 billion years ago.
View Full Publication open_in_new
Abstract
The fourth installment of the evolutionary system of mineralogy considers two stages of planetesimal mineralogy that occurred early in the history of the solar nebula, commencing by 4.566 Ga and lasting for at least 5 million years: (1) primary igneous minerals derived from planetesimal melting and differentiation into core, mantle, and basaltic components and (2) impact mineralization resulting in shock-induced deformation, brecciation, melting, and high-pressure phase transformations.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 534
  • Page 535
  • Page 536
  • Page 537
  • Current page 538
  • Page 539
  • Page 540
  • Page 541
  • Page 542
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025