Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Diamonds form in the upper mantle during episodic events and have been transported to the Earth's surface from at least the Archean to the Phanerozoic. Small diamonds occur as inclusions in robust minerals in tectonically activated, ultrahigh-pressure metamorphosed crustal rock, establishing an association with subduction processes and recycled carbon but providing no economic deposits. Diamonds in economic deposits are estimated to be mainly (99%) derived from subcontinental lithospheric mantle and rarely (approx. 1%) from the asthenosphere. Harzburgite and eclogite are of roughly equal importance as source rocks, followed by lherzolite and websterite. Diamonds which provide evidence of extensive residence time in the mantle are, with minimal exceptions, smooth-surfaced crystalline diamonds (SCD) with potential commercial value. The oldest prolific SCD formation event documented on the world's major diamond producing cratons occurs in Archean lithospheric mantle harzburgite, metasomatized by likely subduction-related potassic carbonatitic fluids.
View Full Publication open_in_new
Abstract
Sulphide-bearing diamonds recovered from the similar to 20 Ma Ellendale 4 and 9 lamproite pipes in north-western Australia were investigated to determine the nitrogen aggregation state of the diamonds and Re Os isotope geochemistry of the sulphide inclusions. The majority of diamond studies have been based on diamonds formed in the sub-continental lithospheric mantle (SCLM) below stable cratons, whereas the Ellendale lamproites intrude the King Leopold Orogen, south of the Kimberley craton. The sulphide inclusions consist of pyrrhotite pentlandite chalcopyrite assemblages, and can be divided into peridotitic and eclogitic parageneses on the basis of their Ni and Os contents. A lherzolitic paragenesis for the high-Ni sulphide inclusions is suggested from their Re and Os concentrations. Regression analysis of the Re Os isotope data for the lherzolitic sulphides yields an age of 1426 130 Ma, with an initial Os-187/Os-188 ratio of 0.1042 +/- 0.0034. The upper limit of the uncertainty on the Os-187/Os-188 initial ratio gives a Re depletion age of 2.96 Ga, indicating the presence of SCLM beneath Ellendale since at least the Mesoarchaean, with the lherzolitic diamond-forming event much younger and unrelated to the craton keel stabilisation. The nitrogen aggregation state of the diamonds and calculated mantle residence temperatures suggest an origin and storage of the Ellendale diamonds in a stable cratonic SCLM, consistent with the King Leopold Orogen being cratonised by about 1.8 Ga. The diamonds do not show evidence for pervasive deformation or platelet degradation, which suggests that the diamonds had a relatively undisturbed 1.4 billion year mantle storage history. (C) 2010 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
Niches are local tissue microenvironments that maintain and regulate stem cells. Long-predicted from mammalian studies, these structures have recently been characterized within several invertebrate tissues using methods that reliably identify individual stem cells and their functional requirements. Although similar single-cell resolution has usually not been achieved in mammalian tissues, principles likely to govern the behavior of niches in diverse organisms are emerging. Considerable progress has been made in elucidating how the microenvironment promotes stem cell maintenance. Mechanisms of stem cell maintenance are key to the regulation of homeostasis and likely contribute to aging and tumorigenesis when altered during adulthood.
View Full Publication open_in_new
Abstract
A mineral chemistry and whole-rock major element, platinum group element (PGE), and Re-Os isotope dataset is presented for a large suite of mantle xenoliths from 13 kimberlites that erupted through the Proterozoic mobile belts surrounding the Archean Kaapvaal craton of South Africa. The peridotites have compositions that are unusually infertile compared with post-Archean lithosphere outside southern Africa (e.g. mean olivine Mg-number = 91 center dot 4; mean whole-rock Al2O3 = 1 center dot 3 wt %) but are similar to xenoliths from the Gibeon kimberlites of southern Namibia, which also erupted through Proterozoic lithosphere. Rhenium depletion model ages (T-RD) determined from 58 Os isotope compositions of peridotites span a range from 2 center dot 6 to 0 center dot 6 Ga, with an average of 1 center dot 67 Ga. Latest Archean T-RD model ages were determined for three samples from different localities, but whether these indicate the off-craton presence of reworked Archean lithosphere or are simply artifacts of heterogeneity in the convecting mantle is unclear. Low and relatively restricted Al2O3 contents combined with variable Os-187/Os-188(i) in the peridotites are most consistent with a two-stage melt extraction history for southern African off-craton lithosphere, with initial formation in the earliest Proterozoic by widely varying (but, on average, moderate) degrees of melting, followed by a second melt extraction episode associated with the Namaquan orogeny at 1 center dot 3-1 center dot 0 Ga. Extensive metasomatism in the lithosphere beneath East Griqualand, SE of the craton, resulted in extreme clinopyroxene enrichment and addition of ilmenite along with disturbance of PGE abundances in many samples. This is probably due to percolation of melts similar to those parental to the Cr-poor megacryst suite, and related pyroxenites, which are abundant in East Griqualand kimberlites. In other regions, there is evidence for less extensive clinopyroxene addition and cryptic metasomatism. Southern African off-craton mantle xenoliths record evidence of a Mesozoic heating episode probably brought about by mantle upwelling linked to continental break-up and/or Karoo flood basalt magmatism. Prior to this, the thermal state, and hence the thickness, of southern African off-craton and cratonic lithosphere were probably roughly similar. The mantle upwelling responsible for lithospheric heating also appears to have caused moderate (approximate to 30 km) thermal erosion of the off-craton portions of the southern African lithosphere.
View Full Publication open_in_new
Abstract
Peridotitic sulphide inclusions in diamonds from the central Slave craton constrain the age and origin of their subcontinental lithospheric mantle (SCLM) sources. These sulphides align with either a ca. 3.5 Ga (shallow SCLM) or a ca. 3.3 Ga isochron (deep SCLM) on a Re-Os ischron diagram, with variably enriched initial Os-187/Os-188. Since some Archaean to recent plume-derived melts carry a subducted crust (eclogite) signature and some cratonic SCLM may have been generated in plumes by extraction of komatiitic liquids, we explain these data by subduction of evolved lithospheric material (shallow SCLM) and melting in a hybrid mantle plume that contains domains of recycled eclogite (deep SCLM), respectively. In upwelling hybrid mantle, eclogite-derived melts react with olivine in surrounding peridotites to form aluminous orthopyroxene, convert peridotite to pyroxenite and confer their crustal isotope signatures. We suggest that it is subsequent to orthopyroxene enrichment of peridotite in an upwelling plume that partial melting of this Al- and Si- enriched source generated komatiites and complementary ultradepleted cratonic mantle residues. Although subduction is needed to explain some cratonic features, melting of a hybrid plume source satisfies several key observations: (1) suprachondritic initial Os-187/Os-188 in subsets of lithospheric mantle samples and in some coeval Archaean komatiites; (2) variable enrichment of cratonic mantle by high-temperature aluminous orthopyroxene; (3) high Mg# combined with high orthopyroxene content in cratonic mantle due to higher melt productivity of an Al- and Si-richer source; (4) variable orthopyroxene enrichment possibly linked to varying mantle potential temperatures (Tp), plume buoyancy and resultant eclogite load and/or variable availability of subducted material in the source; and (5) absence of younger analogues due to a secular decrease in Tp. Most importantly, this model also alleviates a mass balance problem, because it predicts a hybrid mantle source with variably higher SiO2 and Al2O3 than primitive mantle, and, contrary to a primitive mantle source, is able to reconcile compositions of komatiites and complementary cratonic mantle residues.
View Full Publication open_in_new
Abstract
Mineral inclusions encapsulated in diamonds are the oldest, deepest, and most pristine samples of Earth's mantle. They provide age and chemical information over a period of 3.5 billion years-a span that includes continental crustal growth, atmospheric evolution, and the initiation of plate tectonics. We compiled isotopic and bulk chemical data of silicate and sulfide inclusions and found that a compositional change occurred 3.0 billion years ago (Ga). Before 3.2 Ga, only diamonds with peridotitic compositions formed, whereas after 3.0 Ga, eclogitic diamonds became prevalent. We suggest that this resulted from the capture of eclogite and diamond-forming fluids in subcontinental mantle via subduction and continental collision, marking the onset of the Wilson cycle of plate tectonics.
View Full Publication open_in_new
Abstract
The Eagle Cu-Ni-(PGE) deposit is hosted by mafic to ultramafic intrusive rocks associated with the Marquette-Baraga dike swarm in northern Michigan. Sulfide mineralization formed in a conduit system during early stages in the development of the similar to 1.1 Ga Midcontinent Rift System. The conduit environment represents a prime location for melt-rock interaction. In order to better assess the extent of country rock contamination in the Eagle system, a combined trace element, Nd, Os, O and S isotope study of country rocks, sulfide-bearing igneous rocks and massive sulfide was undertaken.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 532
  • Page 533
  • Page 534
  • Page 535
  • Current page 536
  • Page 537
  • Page 538
  • Page 539
  • Page 540
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026