Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Context. In the era of massive spectroscopy surveys, automated stellar parameter pipelines and their validation are extremely important for an efficient scientific exploitation of the spectra.
View Full Publication open_in_new
Abstract
We present the first release of the MaNGA Stellar Library (MaStar), which is a large, well-calibrated, high-quality empirical library covering the wavelength range 3622-10354 angstrom at a resolving power of R similar to 1800. The spectra were obtained using the same instrument as used by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) project, by piggybacking on the Sloan Digital Sky Survey (SDSS-IV)/Apache Point Observatory Galaxy Evolution Experiment 2-N ( APOGEE-2N) observations. Compared to previous empirical libraries, the MaStar library will have a higher number of stars and a more comprehensive stellar-parameter coverage, especially of cool dwarfs, low-metallicity stars, and stars with different [alpha/Fe], achieved by a sophisticated target-selection strategy that takes advantage of stellar-parameter catalogs from the literature. This empirical library will provide a new basis for stellar-population synthesis and is particularly well suited for stellar-population analysis of MaNGA galaxies. The first version of the library contains 8646 high-quality per-visit spectra for 3321 unique stars. Compared to photometry, the relative flux calibration of the library is accurate to 3.9% in g - r, 2.7% in r - i, and 2.2% in i - z. The data are released as part of SDSS Data Release 15. We expect the final release of the library to contain more than 10,000 stars.
View Full Publication open_in_new
Abstract
We report spectroscopic measurements of stars in the recently discovered young stellar association Price-Whelan+1 (PW+1), which was found in the vicinity of the Leading Arm (LA) of the Magellanic Stream (MS). We obtained Magellan+MIKE high-resolution spectra of the 28 brightest stars in PW+1. and used The Cannon to determine their stellar parameters. We find that the mean metallicity of PW+1. is [Fe/H] = -1.23 with a small scatter of 0.06 dex and the mean RV is V-hel = 276.7 km s(-1) with a dispersion of 11.0 km s(-1). Our results are consistent in T-eff, log g, and [Fe/H] with the young and metal-poor characteristics (116 Myr and [Fe/H] = -1.1) determined for PW+1. from our discovery paper. We find a strong correlation between the spatial pattern of the PW.1. stars and the LA II. gas with an offset of -10 degrees.15 in LMS. and +1 degrees. 55 in B-MS. The similarity in metallicity, velocity, and spatial patterns indicates that PW.1. likely originated in LA II. We find that the spatial and kinematic separation between LA II. and PW+1. can be explained by ram pressure from Milky Way (MW) gas. Using orbit integrations that account for the LMC and MW halo and outer disk gas, we constrain the halo gas density at the orbital pericenter of PW+1 to be n(halo) (17 kpc) = 2.7(-2.0)(+3.4) x 10(-3) atoms and the disk gas density at the midplane at 20 kpc to be n(disk) (20 kpc, 0) = 6.0(-2.0)(+1.5) x 10(-2) atoms cm(-3). We, therefore, conclude that PW+1. formed from the LA II. of the MS, making it a powerful constraint on the MW-Magellanic interaction.
View Full Publication open_in_new
Abstract
We present deep spectroscopy from Keck/DEIMOS of Andromeda I, III, V, VII, and X, all of which are dwarf spheroidal satellites of M31. The sample includes 256 spectroscopic members across all five dSphs. We confirm previous measurements of the velocity dispersions and dynamical masses, and we provide upper limits on bulk rotation. Our measurements confirm that M31 satellites obey the same relation between stellar mass and stellar metallicity as Milky Way (MW) satellites and other dwarf galaxies in the Local Group. The metallicity distributions show trends with stellar mass that are similar to those of MW satellites, including evidence in massive satellites for external influence, like pre-enrichment or gas accretion. We present the first measurements of individual element ratios, like [Si/Fe], in the M31 system, as well as measurements of the average [alpha/Fe] ratio. The trends of [alpha/Fe] with [Fe/H] also follow the same galaxy mass-dependent patterns as MW satellites. Less massive galaxies have more steeply declining slopes of [alpha/Fe] that begin at lower [Fe/H]. Finally, we compare the chemical evolution of M31 satellites to M31's Giant Stellar Stream and smooth halo. The properties of the M31 system support the theoretical prediction that the inner halo is composed primarily of massive galaxies that were accreted early. As a result, the inner halo exhibits higher [Fe/H] and [alpha/Fe] than surviving satellite galaxies.
View Full Publication open_in_new
Abstract
We present the results of an extensive search for dwarf satellite galaxies around 10 primary host galaxies in the Local Volume (LV, D < 12 Mpc) using archival CFHT/MegaCam imaging data. The hosts span a wide range in properties, with stellar masses ranging from that of the Large Magellanic Cloud to similar to 3 times that of the Milky Way. The surveyed hosts are: NGC 1023, NGC 1156, NGC 2903, NGC 4258, NGC 4565, NGC 4631, NGC 5023, M51, M64, and M104. We detect satellite candidates using a consistent semi-automated detection algorithm that is optimized for the detection of low surface brightness objects. Depending on the host, our completeness limit is M-g similar to 8 to -10 (assuming the distance of the host). We detect objects with surface brightness down to mu(0,g) similar to 26 mag arcsec(-2) at greater than or similar to 90% completeness. The survey areas of the six best-surveyed hosts cover most of the inner projected R < 150 kpc area, which will roughly double the number of massive LV hosts surveyed at this level of area and luminosity completeness, once distances are measured for the candidates. The number of detected candidates range from 1 around M64 to 33 around NGC 4258. In total, 155 candidates are found, of which 93 are new. While we defer an analysis of the satellite luminosity functions of the hosts until distance information is available for the candidates, we do show that the candidates are primarily red, spheroidal systems with properties roughly consistent with known satellites in the Local Group.
View Full Publication open_in_new
Abstract
Like massive galaxies, dwarf galaxies are expected to undergo major mergers with other dwarfs. However, the end state of these mergers and the role that merging plays in regulating dwarf star formation are uncertain. Using imaging from the Hyper Suprime-Cam Subaru Strategic Program, we construct a sample of dwarf dwarf mergers and examine the star formation and host properties of the merging systems. These galaxies are selected via an automated detection algorithm from a sample of 6875 spectroscopically selected isolated dwarf galaxies at z < 0.12 and log(M, /Mb) < 9.6 from the Galaxy and Mass Assembly and Sloan Digital Sky Survey spectroscopic campaigns. We find a total tidal feature detection fraction of 3.29% (6.1% when considering only galaxies at z < 0.05). The tidal feature detection fraction rises strongly as a function of star formation activity; 15%-20% of galaxies with extremely high Ha equivalent width (Ha EW > 250 A) show signs of tidal debris. Galaxies that host tidal debris are also systematically bluer than the average galaxy at fixed stellar mass. These findings extend the observed dwarf dwarf merger sequence with a significant sample of dwarf galaxies, indicating that star formation triggered in mergers between dwarf galaxies continues after coalescence.
View Full Publication open_in_new
Abstract
Many problems in contemporary astrophysics-from understanding the formation of black holes to untangling the chemical evolution of galaxies-rely on knowledge about binary stars. This, in turn, depends on the discovery and characterization of binary companions for large numbers of different kinds of stars in different chemical and dynamical environments. Current stellar spectroscopic surveys observe hundreds of thousands to millions of stars with (typically) few observational epochs, which allows for binary discovery but makes orbital characterization challenging. We use a custom Monte Carlo sampler (The Joker) to perform discovery and characterization of binary systems through radial velocities, in the regime of sparse, noisy, and poorly sampled multi-epoch data. We use it to generate posterior samplings in Keplerian parameters for 232,495 sources released in APOGEE Data Release 16. Our final catalog contains 19,635 high-confidence close-binary (P less than or similar to few years, a less than or similar to few
View Full Publication open_in_new
Abstract
We present chemical abundances of red giant branch (RGB) stars in the dwarf spheroidal (dSph) satellite system of Andromeda (M31), using spectral synthesis of medium-resolution (R similar to 6000) spectra obtained with the Keck II telescope and Deep Imaging Multi-Object Spectrometer spectrograph via the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey. We coadd stars according to their similarity in photometric metallicity or effective temperature to obtain a signal-to-noise ratio (S/N) high enough to measure average [Fe/H] and [alpha/Fe] abundances. We validate our method using high S/N spectra of RGB stars in Milky Way globular clusters, as well as deep observations for a subset of the M31 dSphs in our sample. For this set of validation coadds, we compare the weighted average abundance of the individual stars with the abundance determined from the coadd. We present individual and coadded measurements of [Fe/H] and [alpha/Fe] for stars in 10 M31 dSphs, including the first [alpha/Fe] measurements for And IX, XIV, XV, and XVIII. These fainter, less massive dSphs show declining [alpha/Fe] relative to [Fe/H], implying an extended star formation history (SFH). In addition, these dSphs also follow the same mass-metallicity relation found in other Local Group satellites. The conclusions we infer from coadded spectra agree with those from previous measurements in brighter M31 dSphs with individual abundance measurements, as well as conclusions from photometric studies. These abundances greatly increase the number of spectroscopic measurements of the chemical composition of M31's less massive dwarf satellites, which are crucial to understanding their SFH and interaction with the M31 system.
View Full Publication open_in_new
Abstract
We report on H-band spectra of chemically peculiar Mercury-Manganese (HgMn) stars obtained via the SDSS/APOGEE survey. As opposed to other varieties of chemically peculiar stars such as classical Ap/Bp stars, HgMn stars lack strong magnetic fields and are defined by extreme overabundances of Mn, Hg, and other heavy elements. A satisfactory explanation for the abundance patterns remains to be determined, but low rotational velocity is a requirement and involvement in binary/multiple systems may be as well. The APOGEE HgMn sample currently consists of 269 stars that were identified among the telluric standard stars as those whose metallic absorption content is limited to or dominated by the H-band Mn n lines. Due to the fainter magnitudes probed by the APOGEE survey as compared to past studies, only 9/269 stars in the sample were previously known as HgMn types. The 260 newly identified HgMn stars represents a more than doubling of the known sample. At least 32 per cent of the APOGEE sample are found to be binary or multiple systems, and from multi-epoch spectroscopy, we were able to determine orbital solutions for at least one component in 32 binaries. Many of the multilined systems include chemically peculiar companions, with noteworthy examples being the HgMn+Ap/Bp binary HD 5429, the HgMn+HgMn binary HD 298641, and the HgMn+Bp Mn + Am triple system HD 231263. As a further peculiarity, roughly half of the sample produces narrow emission in the C1 16895 A line, with widths and radial velocities that match those of the Mn II lines.
View Full Publication open_in_new
Abstract
The stellar velocity distribution function in the solar vicinity is reexamined using data from the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey's DR16 and Gaia DR2. By exploiting APOGEE's ability to chemically discriminate with great reliability the thin-disk, thick-disk, and (accreted) halo populations, we can, for the first time, derive the three-dimensional velocity distribution functions (DFs) for these chemically separated populations. We employ this smaller but more data-rich APOGEE+Gaia sample to build a data-driven model of the local stellar population velocity DFs and use these as basis vectors for assessing the relative density proportions of these populations over the 5
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 446
  • Page 447
  • Page 448
  • Page 449
  • Current page 450
  • Page 451
  • Page 452
  • Page 453
  • Page 454
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025