Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The present study is the first of a series of three papers where we characterise the type II supernovae (SNe II) from the Carnegie Supernova Project-I to understand their diversity in terms of progenitor and explosion properties. In this first paper, we present bolometric light curves of 74 SNe IL We outline our methodology to calculate the bolometric luminosity, which consists of the integration of the observed fluxes in numerous photometric bands (uBgVriY JH) and black-body (BB) extrapolations to account for the unobserved flux at shorter and longer wavelengths. BB fits were performed using all available broadband data except when line blanketing effects appeared. Photometric bands bluer than r that are affected by line blanketing were removed from the fit, which makes near-infrared (NIR) observations highly important to estimate reliable BB extrapolations to the infrared. BB fits without NIR data produce notably different bolometric light curves, and therefore different estimates of SN II progenitor and explosion properties when data are modelled. We present two methods to address the absence of NIR observations: (a) colour-colour relationships from which NIR magnitudes can be estimated using optical colours, and (b) new prescriptions for bolometric corrections as a function of observed SN II colours. Using our 74 SN II bolometric light curves, we provide a full characterisation of their properties based on several observed parameters. We measured magnitudes at different epochs, as well as durations and decline rates of different phases of the evolution. An analysis of the light-curve parameter distributions was performed, finding a wide range and a continuous sequence of observed parameters which is consistent with previous analyses using optical light curves.
View Full Publication open_in_new
Abstract
Linking supernovae to their progenitors is a powerful method for furthering our understanding of the physical origin of their observed differences while at the same time testing stellar evolution theory. In this second study of a series of three papers where we characterise type II supernovae (SNe II) to understand their diversity, we derive progenitor properties (initial and ejecta masses and radius), explosion energy, and Ni-56 mass and its degree of mixing within the ejecta for a large sample of SNe IL This dataset was obtained by the Carnegie Supernova Project-I and is characterised by a high cadence of SNe II optical and near-infrared light curves and optical spectra that were homogeneously observed and processed. A large grid of hydrodynamical models and a fitting procedure based on Markov chain Monte Carlo methods were used to fit the bolometric light curve and the evolution of the photospheric velocity of 53 SNe II. We infer ejecta masses of between 7.9 and 14.8 M-circle dot, explosion energies between 0.15 and 1.40 foe, and Ni-56 masses between 0.006 and 0.069 M-circle dot. We define a subset of 24 SNe (the 'gold sample') with well-sampled bolometric light curves and expansion velocities for which we consider the results more robust. Most SNe II in the gold sample (similar to 88%) are found with ejecta masses in the range of similar to 8-10 M-circle dot, coming from low zero-age main-sequence masses (9-12 M-circle dot). The modelling of the initial-mass distribution of the gold sample gives an upper mass limit of 21.3(-0.4)(+3.8)M(circle dot) and a much steeper distribution than that for a Salpeter massive-star initial mass function (IMF). This IMF incompatibility is due to the large number of low-mass progenitors found - when assuming standard stellar evolution. This may imply that high-mass progenitors lose more mass during their lives than predicted. However, a deeper analysis of all stellar evolution assumptions is required to test this hypothesis.
View Full Publication open_in_new
Abstract
We present 75 near-infrared (NIR; 0.8-2.5 mu m) spectra of 34 stripped-envelope core-collapse supernovae (SESNe) obtained by the Carnegie Supernova Project-II (CSP-II), encompassing optical spectroscopic Types IIb, Ib, Ic, and Ic-BL. The spectra range in phase from pre-maximum to 80 days past maximum. This unique data set constitutes the largest NIR spectroscopic sample of SESNe to date. NIR spectroscopy provides observables with additional information that is not available in the optical. Specifically, the NIR contains the strong lines of He i and allows a more detailed look at whether Type Ic supernovae are completely stripped of their outer He layer. The NIR spectra of SESNe have broad similarities, but closer examination through statistical means reveals a strong dichotomy between NIR "He-rich" and "He-poor" SNe. These NIR subgroups correspond almost perfectly to the optical IIb/Ib and Ic/Ic-BL types, respectively. The largest difference between the two groups is observed in the 2 mu m region, near the He i lambda 2.0581 mu m line. The division between the two groups is not an arbitrary one along a continuous sequence. Early spectra of He-rich SESNe show much stronger He i lambda 2.0581 mu m absorption compared to the He-poor group, but with a wide range of profile shapes. The same line also provides evidence for trace amounts of He in half of our SNe in the He-poor group.
View Full Publication open_in_new
Abstract
Since the discovery of the accelerating expansion of the Universe more than two decades ago, Type Ia Supernovae (SNe Ia) have been extensively used as standardisable candles in the optical. However, SNe Ia have shown to be more homogeneous in the near-infrared (NIR), where the effect of dust extinction is also attenuated. In this work, we explore the possibility of using a low number of NIR observations for accurate distance estimations, given the homogeneity at these wavelengths. We found that one epoch in J and/or H band, plus good gr-band coverage, gives an accurate estimation of peak magnitudes in the J (J(max)) and H (H-max) bands. The use of a single NIR epoch only introduces an additional scatter of similar to 0.05 mag for epochs around the time of B-band peak magnitude (T-max). We also tested the effect of optical cadence and signal-to-noise ratio (S/N) in the estimation of T-max and its uncertainty propagation to the NIR peak magnitudes. Both cadence and S/N have a similar contribution, where we constrained the introduced scatter of each to < 0.02 mag in J(max) and < 0.01 in H-max. However, these effects are expected to be negligible, provided the data quality is comparable to that obtained for observations of nearby SNe (z less than or similar to 0.1). The effect of S/N in the NIR was tested as well. For SNe Ia at 0.08 < z less than or similar to 0.1, NIR observations with better S/N than that found in the CSP sample is necessary to constrain the introduced scatter to a minimum (less than or similar to 0.05 mag). These results provide confidence for our FLOWS project that is aimed at using SNe Ia with public ZTF optical light curves and few NIR epochs to map out the peculiar velocity field of the local Universe. This will allow us to determine the distribution of dark matter in our own supercluster, Laniakea, and to test the standard cosmological model by measuring the growth rate of structures, parameterised by fD, and the Hubble-Lemaitre constant, H-0.
View Full Publication open_in_new
Abstract
The Magellanic Clouds are a local laboratory for understanding the evolution and properties of dwarf irregular galaxies. To reveal the extended structure and interaction history of the Magellanic Clouds we have undertaken a large-scale photometric and spectroscopic study of their stellar periphery (the MAgellanic Periphery Survey, MAPS). We present first MAPS results for the Small Magellanic Cloud (SMC): Washington M, T-2 + DDO51 photometry reveals metal-poor red giant branch stars in the SMC that extend to large radii (similar to 11 kpc), are distributed nearly azimuthally symmetrically (ellipticity = 0.1), and are well fitted by an exponential profile (out to R approximate to 7 degrees.5). An similar to 6 Gyr old, [Fe/H] approximate to - 1.3 main-sequence turnoff is also evident to at least R = 7 degrees.3, and as far as 8 degrees.4 in some directions. We find evidence for a "break" population beyond similar to 8 radial scale lengths having a very shallow radial density profile that could be either a bound stellar halo or a population of extratidal stars. The distribution of the intermediate stellar component (3 degrees less than or similar to R less than or similar to 7 degrees.5) contrasts with that of the inner stellar component (R less than or similar to 3 degrees), which is both more elliptical (epsilon approximate to 0.3) and offset from the center of the intermediate component by 0 degrees.59, although both components share a similar radial exponential scale length. This offset is likely due to a perspective effect because stars on the eastern side of the SMC are closer on average than stars on the western side. This mapping of its outer stellar structures indicates that the SMC is more complex than previously thought.
View Full Publication open_in_new
Abstract
A superior mutual event of the Kuiper Belt binary system (79360) Sila-Nunam was observed over 15.47 h on UT 7/8 February 2013 by a coordinated effort at four different telescope facilities; it started similar to 1.5 h earlier than anticipated, the duration was similar to 9.5 h (about 10% longer than predicted), and was slightly less deep than predicted. It is the first full event observed for a comparably sized binary Kuiper Belt object. We provide predictions for future events refined by this and other partial mutual event observations obtained since the mutual event season began. (C) 2013 Elsevier Inc. All rights reserved.
View Full Publication open_in_new
Abstract
Dark Skies, Bright Kids! (DSBK) is an outreach organization that seeks to enhance elementary-level science literacy and encourage inquiry through fun, hands-on activities. DSBK was formed by, and is operated through, volunteer efforts from professional scientists at all career stages, e.g., from first-year undergraduate students to tenured professors. Although DSBK has amassed over 14,000 contact hours since 2009, there has been no formal evaluation of the programs impacts. Over the past year, DSBK introduced a large-scale, student-led internal assessments program with the systematic evaluation of student workbooks, volunteer surveys, and observations. While the data indicated broad-scale success for the program for both of its goals, it also revealed the organizational and educational practices that not only maximized student achievement, but also created the largest overall volunteer satisfaction with their time commitment. Here we describe DSBK in detail, summarize the student-led implementation of the assessments program, discuss how the results of the assessments have positively impacted our operations, and generalize these results for other scientist-led outreach efforts.
View Full Publication open_in_new
Abstract
We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color-color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample's eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.
View Full Publication open_in_new
Abstract
A history is given of the discovery between 1914 and 1935 of stars of intermediate luminosity between giants and dwarfs with spectral types between G0 to K3. The Mount Wilson spectroscopists identified about 90 such stars in their 1935 summary paper of spectroscopic absolute magnitudes for 4179 stars. Called "subgiants" by Stromberg, these 90 stars defined the group at the time. The position of the Mount Wilson subgiants in the HR diagram caused difficulties in comparisons of high weight trigonometric parallaxes being measured in the 1930s and with Russell's prevailing evolution proposal, and critics questioned the reality of the Mount Wilson subgiants. To show that the 1935 Mount Wilson subgiants are real, we compare, star-by-star, the Mount Wilson spectroscopic absolute magnitudes of the 90 stars defining their sample against those absolute magnitudes derived from Hipparcos trigonometric parallaxes. We address concerns over biases in the Mount Wilson calibration sample and biases created by the adopted methodology for calibration. Historically, these concerns were sufficient to discredit the discovery of subgiants in the Mount Wilson sample. However, as shown here, the majority of the Mount Wilson stars identified as subgiants that also have reliable Hipparcos trigonometric parallaxes do lie among the subgiant sequence in the Hipparcos HR diagram. Moreover, no significant offset is seen between the M-V brightnesses derived from the Mount Wilson spectroscopic parallaxes and the M-V values derived from Hipparcos trigonometric parallaxes with sigma(pi)/pi < 0.10, which confirms in an impressive manner the efficacy of the original Mount Wilson assessments. The existence of subgiants proved that Russell's contraction proposal for stellar evolution from giants to the main sequence was incorrect. Instead, Gamow's 1944 unpublished conjecture that subgiants are post main-sequence stars just having left the main sequence was very nearly correct but was a decade before its time.
View Full Publication open_in_new
Abstract
Ultra-faint dwarf galaxies (UFDs) are the faintest known galaxies, and due to their incredibly low surface brightness, it is difficult to find them beyond the Local Group. We report a serendipitous discovery of a UFD, Fornax UFD1, in the outskirts of NGC 1316, a giant galaxy in the Fornax cluster. The new galaxy is located at a projected radius of 55 kpc in the south-east of NGC 1316. This UFD is found as a small group of resolved stars in the Hubble Space Telescope images of a halo field of NGC 1316, obtained as part of the Carnegie-Chicago Hubble Program. Resolved stars in this galaxy are consistent with being mostly metal-poor red giant branch (RGB) stars. Applying the tip of the RGB method to the mean magnitude of the two brightest RGB stars, we estimate the distance to this galaxy, 19.0. +/-. 1.3 Mpc. Fornax UFD1 is probably a member of the Fornax cluster. The color-magnitude diagram of these stars is matched by a 12 Gyr isochrone with low metallicity ([Fe/H]approximate to-2.4). Total magnitude and effective radius of Fornax UFD1 are M-V approximate to -7.6 +/- 0.2 mag and r(eff) = 146 +/- 9 pc, which are similar to those of Virgo UFD1 that was discovered recently in the intracluster field of Virgo by Jang & Lee. Fornax UFD1 is the most distant known UFD that is confirmed by resolved stars. This indicates that UFDs are ubiquitous and that more UFDs remain to be discovered in the Fornax cluster.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 444
  • Page 445
  • Page 446
  • Page 447
  • Current page 448
  • Page 449
  • Page 450
  • Page 451
  • Page 452
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025