Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present [Fe/H] and [alpha/Fe] abundances, derived using spectral synthesis techniques, for stars in M31's outer stellar halo. The 21 [Fe/H] measurements and 7 [alpha/Fe] measurements are drawn from fields ranging from 43 to 165 kpc in projected distance from M31. We combine our measurements with existing literature measurements, and compare the resulting sample of 23 stars with [Fe/H] and 9 stars with [alpha/Fe] measurements in M31's outer halo with [alpha/Fe] and [Fe/H] measurements, also derived from spectral synthesis, in M31's inner stellar halo (r < 26 kpc) and dSph galaxies. The stars in M31's outer halo have [alpha/Fe] patterns that are consistent with the largest of M31's dSph satellites (And I and And VII). These abundances provide tentative evidence that the [alpha/Fe] abundances of stars in M31's outer halo are more similar to the abundances of Milky Way halo stars than to the abundances of stars in M31's inner halo. We also compare the spectral synthesis-based [Fe/H] measurements of stars in M31's halo with previous photometric [Fe/H] estimates, as a function of projected distance from M31. The spectral synthesis-based [Fe/H] measurements are consistent with a large-scale metallicity gradient previously observed in M31's stellar halo to projected distances as large as 100 kpc.
View Full Publication open_in_new
Abstract
The spectral analysis and data products in Data Release 16 (DR16; 2019 December) from the high-resolution near-infrared Apache Point Observatory Galactic Evolution Experiment (APOGEE)-2/Sloan Digital Sky Survey (SDSS)-IV survey are described. Compared to the previous APOGEE data release (DR14; 2017 July), APOGEE DR16 includes about 200,000 new stellar spectra, of which 100,000 are from a new southern APOGEE instrument mounted on the 2.5 m du Pont telescope at Las Campanas Observatory in Chile. DR16 includes all data taken up to 2018 August, including data released in previous data releases. All of the data have been re-reduced and re-analyzed using the latest pipelines, resulting in a total of 473,307 spectra of 437,445 stars. Changes to the analysis methods for this release include, but are not limited to, the use of MARCS model atmospheres for calculation of the entire main grid of synthetic spectra used in the analysis, a new method for filling "holes" in the grids due to unconverged model atmospheres, and a new scheme for continuum normalization. Abundances of the neutron-capture element Ce are included for the first time. A new scheme for estimating uncertainties of the derived quantities using stars with multiple observations has been applied, and calibrated values of surface gravities for dwarf stars are now supplied. Compared to DR14, the radial velocities derived for this release more closely match those in the Gaia DR2 database, and a clear improvement in the spectral analysis of the coolest giants can be seen. The reduced spectra as well as the result of the analysis can be downloaded using links provided on the SDSS DR16 web page.
View Full Publication open_in_new
Abstract
We present nearly 500 days of observations of the tidal disruption event (TDE) ASASSN-18pg, spanning from 54 days before peak light to 441 days after peak light. Our data set includes X-ray, UV, and optical photometry, optical spectroscopy, radio observations, and the first published spectropolarimetric observations of a TDE. ASASSN-18pg was discovered on 2018 July 11 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance ofd = 78.6 Mpc; with a peak UV magnitude ofm 14, it is both one of the nearest and brightest TDEs discovered to-date. The photometric data allow us to track both the rise to peak and the long-term evolution of the TDE. ASASSN-18pg peaked at a luminosity ofL 2.4 x 10(44)erg s(-1), and its late-time evolution is shallower than a flux proportional to t(-5/3)power-law model, similar to what has been seen in other TDEs. ASASSN-18pg exhibited Balmer lines and spectroscopic features consistent with Bowen fluorescence prior to peak, which remained detectable for roughly 225 days after peak. Analysis of the two-component H alpha profile indicates that, if they are the result of reprocessing of emission from the accretion disk, the different spectroscopic lines may be coming from regions between similar to 10 and similar to 60 lt-days from the black hole. No X-ray emission is detected from the TDE, and there is no evidence of a jet or strong outflow detected in the radio. Our spectropolarimetric observations indicate that the projected emission region is likely not significantly aspherical, with the projected emission region having an axis ratio of greater than or similar to 0.65.
View Full Publication open_in_new
Abstract
We increase the sample of ultradiffuse galaxies (UDGs) in lower-density environments with characterized globular cluster (GC) populations using new Hubble Space Telescope observations of nine UDGs in group environments. While the bulk of our UDGs have GC abundances consistent with normal dwarf galaxies, two of these UDGs have excess GC populations. These two UDGs both have GC luminosity functions consistent with higher surface brightness galaxies and cluster UDGs. We then combine our nine objects with previous studies to create a catalog of UDGs with analyzed GC populations that spans a uniquely diverse range of environments. We use this catalog to examine broader trends in the GC populations of low stellar mass galaxies. The highest GC abundances are found in cluster UDGs, but whether cluster UDGs are actually more extreme requires the study of many more UDGs in groups. We find a possible positive correlation between GC abundance and stellar mass, and between GC abundance and galaxy size at fixed stellar mass. However, we see no significant relation between stellar mass and galaxy size, over our limited stellar mass range. We consider possible origins of the correlation between GC abundance and galaxy size, including the possibility that these two galaxy properties are both dependent on the galaxy dark matter halo, or that they are related through baryonic processes like internal feedback.
View Full Publication open_in_new
Abstract
The radial spatial distribution of low-mass satellites around a Milky Way (MW)-like host is an important benchmark for simulations of small-scale structure. The distribution is sensitive to the disruption of subhalos by the central disk and can indicate whether the disruption observed in simulations of MW analogs is artificial (i.e., numerical) or physical in origin. We consider a sample of 12 well-surveyed satellite systems of MW-like hosts in the Local Volume (D < 12 Mpc) that are complete toM(V) < -9 and within 150 projected kpc. We investigate the radial distribution of satellites and compare with ?CDM cosmological simulations, including big-box cosmological simulations and high-resolution zoom-in simulations of MW-sized halos. We find that the observed satellites are significantly more centrally concentrated than the simulated systems. Several of the observed hosts, including the MW, are similar to 2 sigma outliers relative to the simulated hosts in being too concentrated, while none of the observed hosts are less centrally concentrated than the simulations. This result is robust to different ways of measuring the radial concentration. We find that this discrepancy is more significant for bright,M-V < -12 satellites, suggestive that this is not the result of observational incompleteness. We argue that the discrepancy is possibly due to artificial disruption in the simulations, but, if so, this has important ramifications for what relation between stellar mass and halo mass is allowed in the low-mass regime by the observed abundance of satellites.
View Full Publication open_in_new
Abstract
We present the serendipitous discovery of a low optical-luminosity nova occurring in a D-type symbiotic binary star system in the Milky Way. We lay out the extensive archival data alongside new follow-up observations related to the stellar object CN Cha in the constellation of Chamaeleon. The object had long period (250 days), high amplitude (3 mag) optical variability in its recent past, preceding an increase in optical brightness by 8 magnitudes and a persistence at this brightness for about 3 yr, followed by a period of 1.4 mag yr(-1)dimming. The object's current optical luminosity seems to be dominated by H alpha emission, which also exhibits blueshifted absorption (a P-Cygni-like profile). After consideration of a number of theories to explain these myriad observations, we determine that CN Cha is most likely a symbiotic (an evolved-star-white-dwarf binary) system that has undergone a long-duration, low optical brightness, nova, placing it squarely in the class of so-called "slow novae," of which there are only a few known examples. The duration of the optical plateau in CN Cha would make it the shortest timescale plateau of any known slow symbiotic novae.
View Full Publication open_in_new
Abstract
Though smooth, extended spheroidal stellar outskirts have long been observed around nearby dwarf galaxies, it is unclear whether dwarfs generically host an extended stellar halo. We use imaging from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) to measure the shapes of dwarf galaxies out to four effective radii for a sample of 6758 dwarfs at 0.005 < z > and 10(7.0) < M-star/M-circle dot < 10(9.6). We find that dwarfs are slightly triaxial, with < B/A > greater than or similar to 0.75 (where the ellipsoid is characterized by three principal semiaxes constrained by C <= B <= A). At M-star > 10(8.5) M-circle dot, the galaxies grow from thick disk-like at one effective radius toward the spheroidal extreme at four effective radii. We also see that although blue dwarfs are, on average, characterized by thinner disks than red dwarfs, both blue and red dwarfs grow more spheroidal as a function of radius. This relation also holds true for a comparison between field and satellite dwarfs. This uniform trend toward relatively spheroidal shapes as a function of radius is consistent with an in situ formation mechanism for stellar outskirts around low-mass galaxies, in agreement with proposed models where star formation feedback produces round stellar outskirts around dwarfs.
View Full Publication open_in_new
Abstract
Low-mass satellites around Milky Way (MW)-like galaxies are important probes of small-scale structure and galaxy formation. However, confirmation of satellite candidates with distance measurements remains a key barrier to fast progress in the Local Volume (LV). We measure the surface brightness fluctuation distances to recently cataloged candidate dwarf satellites around 10 massive hosts within D < 12 Mpc to confirm association. The satellite systems of these hosts are complete and mostly cleaned of contaminants down to M-g similar to -9 to -10, within the area of the search footprints. Joining this sample with hosts surveyed to comparable or better completeness in the literature, we explore how well cosmological simulations combined with common stellar to halo mass relations (SHMR) match observed satellite luminosity functions in the classical satellite luminosity regime. Adopting an SHMR that matches hydrodynamic simulations, we find that the predicted overall satellite abundance agrees well with the observations. The MW is remarkably typical in its luminosity function among LV hosts. We find that the host-to-host scatter predicted by the model is in close agreement with the scatter between the observed systems, once the different masses of the observed systems are taken into account. However, we find significant evidence that the observed systems have more bright and fewer faint satellites than the SHMR model predicts, possibly necessitating a higher normalization of the SHMR around halo masses of 10(11) M or significantly greater scatter than present in common SHMRs. These results demonstrate the utility of nearby satellite systems in inferring the galaxy-subhalo connection in the low-mass regime.
View Full Publication open_in_new
Abstract
Many approaches to galaxy dynamics assume that the gravitational potential is simple and the distribution function is time invariant. Under these assumptions there are traditional tools for inferring potential parameters given observations of stellar kinematics (e.g., Jeans models). However, spectroscopic surveys measure many stellar properties beyond kinematics. Here we present a new approach for dynamical inference, Orbital Torus Imaging, which makes use of kinematic measurements and element abundances (or other invariant labels). We exploit the fact that, in steady state, stellar labels vary systematically with orbit characteristics (actions), yet must be invariant with respect to orbital phases (conjugate angles). The orbital foliation of phase space must therefore coincide with surfaces along which all moments of all stellar label distributions are constant. Both classical-statistics and Bayesian methods can be built on this; these methods will be more robust and require fewer assumptions than traditional tools because they require no knowledge of the (spatial) survey selection function and do not involve second moments of velocity distributions. We perform a classical-statistics demonstration with red giant branch stars from the APOGEE surveys: we model the vertical orbit structure in the Milky Way disk to constrain the local disk mass, scale height, and the disk-halo mass ratio (at fixed local circular velocity). We find that the disk mass can be constrained (naively) at the few-percent level with Orbital Torus Imaging using only eight element-abundance ratios, demonstrating the promise of combining stellar labels with dynamical invariants.
View Full Publication open_in_new
Abstract
We present the kinematic and chemical profiles of red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE)-2 survey in the direction of the Jhelum stellar stream, a Milky Way substructure located in the inner halo of the Milky Way at a distance from the Sun of approximate to 13 kpc. From the six APOGEE-2 Jhelum pointings, we isolate stars with log(g) < 3.5, leaving a sample of 289 red giant stars. From this sample of APOGEE-2 giants, we identified seven stars that are consistent with the astrometric signal from Gaia DR2 for this stream. Of these seven, one falls onto the red giant branch (RGB) along the same sequence as the Jhelum stars presented by Ji et al. This new Jhelum member has [Fe/H] = -2.2 and is at the tip of the RGB. By selecting high orbital eccentricity, metal-rich stars, we identify red giants in our APOGEE2 sample that are likely associated with the Gaia-Enceladus-Sausage (GES) merger. We compare the abundance profiles of the Jhelum stars and GES stars and find similar trends in alpha-elements, as expected for low-metallicity populations. However, we find that the orbits for GES and Jhelum stars are not generally consistent with a shared origin. The chemical abundances for the APOGEE-2 Jhelum star and other confirmed members of the stream are similar to stars in known stellar streams and thus are consistent with an accreted dwarf galaxy origin for the progenitor of the stream, although we cannot rule out a globular cluster origin.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 447
  • Page 448
  • Page 449
  • Page 450
  • Current page 451
  • Page 452
  • Page 453
  • Page 454
  • Page 455
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025