Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We investigate stellar metallicity distribution functions (MDFs), including Fe and alpha-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a MilkyWay-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [alpha/Fe] versus [Fe/H] of less than or similar to 0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to less than or similar to 0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.
View Full Publication open_in_new
Abstract
We use cosmological hydrodynamical simulations of Milky Way-mass galaxies from the FIRE project to evaluate various strategies for estimating the mass of a galaxy's stellar halo from deep, integrated-light images. We find good agreement with integrated-light observations if we mimic observational methods to measure the mass of the stellar halo by selecting regions of an image via projected radius relative to the disk scale length or by their surface density in stellar mass. However, these observational methods systematically underestimate the accreted stellar component, defined in our (and most) simulations as the mass of stars formed outside of the host galaxy, by up to a factor of 10, since the accreted component is centrally concentrated and therefore substantially obscured by the galactic disk. Furthermore, these observational methods introduce spurious dependencies of the estimated accreted stellar component on the stellar mass and size of galaxies that can obscure the trends in accreted stellar mass predicted by cosmological simulations, since we find that in our simulations, the size and shape of the central galaxy are not strongly correlated with the assembly history of the accreted stellar halo. This effect persists whether galaxies are viewed edge-on or face-on. We show that metallicity or color information may provide a way to more cleanly delineate in observations the regions dominated by accreted stars. Absent additional data, we caution that estimates of the mass of the accreted stellar component from single-band images alone should be taken as lower limits.
View Full Publication open_in_new
Abstract
We present measurements of [Fe/H] and [alpha/Fe] for 128 individual red giant branch stars (RGB) in the stellar halo of M31, including its Giant Stellar Stream (GSS), obtained using spectral synthesis of low- and medium-resolution Keck/DEIMOS spectroscopy (R similar to 3000 and 6000, respectively). We observed four fields in M31's stellar halo (at projected radii of 9, 18, 23, and 31 kpc), as well as two fields in the GSS (at 33 kpc). In combination with existing literature measurements, we have increased the sample size of [Fe/H] and [alpha/Fe] measurements from 101 to a total of 229 individual M31 RGB stars. From this sample, we investigate the chemical abundance properties of M31's inner halo, finding <[Fe/H]> = -1.08 +/- 0.04 and [alpha/Fe]) = 0.40 +/- 0.03. Between 8 and 34 kpc, the inner halo has a steep [Fe/H] gradient (-0.025 +/- 0.002 dex kpc(-1)) and negligible [alpha/Fe] gradient, where substructure in the inner halo is systematically more metal-rich than the smooth component of the halo at a given projected distance. Although the chemical abundances of the inner stellar halo are largely inconsistent with that of present-day dwarf spheroidal (dSph) satellite galaxies of M31, we identified 22 RGB stars kinematically associated with the smooth component of the stellar halo that have chemical abundance patterns similar to M31 dSphs. We discuss formation scenarios for M31 's halo, concluding that these dSph-like stars may have been accreted from galaxies of similar stellar mass and star formation history, or of higher stellar mass and similar star formation efficiency.
View Full Publication open_in_new
Abstract
We analyze existing measurements of [Fe/H] and [alpha/Fe] for individual red giant branch (RGB) stars in the Giant Stellar Stream (GSS) of M31 to determine whether spatial abundance gradients are present. These measurements were obtained from low- (R similar to 3000) and moderate- (R similar to 6000) resolution Keck/DEIMOS spectroscopy using spectral synthesis techniques as part of the Elemental Abundances in M31 survey. From a sample of 62 RGB stars spanning the GSS at 17, 22, and 33 projected kpc, we measure a [Fe/H] gradient of -0.018 +/- 0.003 dex kpc(-1) and negligible [alpha/Fe] gradient with M31-centric radius. We investigate GSS abundance patterns in the outer halo using additional [Fe/H] and [alpha/Fe] measurements for six RGB stars located along the stream at 45 and 58 projected kpc. These abundances provide tentative evidence that the trends in [Fe/H] and [alpha/Fe] beyond 40 kpc in the GSS are consistent with those within 33 kpc. We also compare the GSS abundances to 65 RGB stars located along the possibly related Southeast (SE) shelf substructure at 12 and 18 projected kpc. The abundances of the GSS and SE shelf are consistent, supporting a common origin hypothesis, although this interpretation may be complicated by the presence of [Fe/H] gradients in the GSS. We discuss the abundance patterns in the context of photometric studies from the literature and explore implications for the properties of the GSS progenitor, suggesting that the high [alpha/Fe] of the GSS (+0.40 +/- 0.05 dex) favors a major merger scenario for its formation.
View Full Publication open_in_new
Abstract
Omega Prime is a wide-field near-infrared camera for the prime focus of the Calar Alto 3.5 m telescope in Spain. The detector is a 1024 x 1024 pixel HAWAII array made by Rockwell. The image scale is 0.4 arcsec/pixel, giving a field of view of 6.8 x 6.8 arcmin. In order to maximize the throughput, the optics were designed as a prime focus corrector with only three lenses. This simple design without a cold pupil provides an excellent image quality over the entire field of view. To reduce thermal background at wavelengths longer than 2.2 mu m, Omega Prime has a series of cold internal baffles and an additional toroidal mirror outside the dewar. This annular reflector causes detector pixels to "see" mostly the cold interior of the camera. The camera has been in operation since May 1996 and has been used for a variety of scientific programs, including a very deep K' survey covering 1000 square arcmin to a 5 sigma limit for point-sources of 20.5 magnitude.
View Full Publication open_in_new
Abstract
Observations indicate that a continuous supply of gas is needed to maintain observed star formation rates in large, discy galaxies. To fuel star formation, gas must reach the inner regions of such galaxies. Despite its crucial importance for galaxy evolution, how and where gas joins galaxies is poorly constrained observationally and rarely explored in fully cosmological simulations. To investigate gas accretion in the vicinity of galaxies at low redshift, we analyse the FIRE-2 cosmological zoom-in simulations for 4 Milky Way mass galaxies (M-halo similar to 10(12)M(circle dot)), focusing on simulations with cosmic ray physics. We find that at z similar to 0, gas approaches the disc with angular momentum similar to the gaseous disc edge and low radial velocities, piling-up near the edge and settling into full rotational support. Accreting gas moves predominately parallel to the disc and joins largely in the outskirts. Immediately prior to joining the disc, trajectories briefly become more vertical on average. Within the disc, gas motion is complex, being dominated by spiral arm induced oscillations and feedback. However, time and azimuthal averages show slow net radial infall with transport speeds of 1-3 km s(-1) and net mass fluxes through the disc of similar to M-circle dot yr(-1), comparable to the galaxies' star formation rates and decreasing towards galactic centre as gas is sunk into star formation. These rates are slightly higher in simulations without cosmic rays (1-7 km s(-1), similar to 4-5 M-circle dot yr(-1)). We find overall consistency of our results with observational constraints and discuss prospects of future observations of gas flows in and around galaxies.
View Full Publication open_in_new
Abstract
The Las Campanas Infrared Survey Camera is a near-infrared (1.0-2.5 mum), wide- area instrument used to detect and measure the photometric properties of galaxies out to large redshifts, z > 2. The camera, a modified Offner 1 : 1 reimaging optical system, is mounted at the f/7.5 focus of the 2.5 m du Pont Telescope. The detectors are four Rockwell 1024 x 1024 HgCdTe (HAWAII) arrays operating at a scale of 0."20 pixel(-1). With four telescope pointings, the instrument produces a pipelined mosaic of J, H, or Ks images 13' x 13' on the sky, with a measured point-spread function as good as 0."38 FWHM. The good imaging quality results in part from fast tip-tilt guiding on stars within a 9' x 9' field centered on the optical axis of the telescope. Appropriately bright guide stars are found within 2 s from a catalog of 5 x 10(7) stars and presented as a finding chart to the observer. The optical, mechanical, and thermal design choices and their associated engineering implementations are discussed in some detail. The detector readout electronics, the automatic data acquisition and control system, and our data reduction pipeline are also described. The design goals of the camera excellent imaging quality and throughput, low flexure and internal background, and 5 Hz on-axis guiding, are all realized and quantified.
View Full Publication open_in_new
Abstract
We obtained Keck/DEIMOS spectra of 556 individual red giant branch stars in four spectroscopic fields spanning 13-31 projected kpc along the northeast (NE) shelf of M31. We present the first detection of a complete wedge pattern in the space of projected M31-centric radial distance versus line-of-sight velocity for this feature, which includes the returning stream component of the shelf. This wedge pattern agrees with expectations of a tidal shell formed in a radial merger and provides strong evidence in favor of predictions of Giant Stellar Stream (GSS) formation models in which the NE shelf originates from the second orbital wrap of the tidal debris. The observed concentric wedge patterns of the NE, west (W), and southeast (SE) shelves corroborate this interpretation independently of the models. We do not detect a kinematical signature in the NE shelf region corresponding to an intact progenitor core, favoring GSS formation models in which the progenitor is completely disrupted. The shelf's photometric metallicity ([Fe/H](phot)) distribution implies that it is dominated by tidal material, as opposed to the phase-mixed stellar halo or the disk. The metallicity distribution ([Fe/H](phot) = -0.42 +/- 0.01) also matches the GSS, and consequently the W and SE shelves, further supporting a direct physical association between the tidal features.
View Full Publication open_in_new
Abstract
PANIC (Persson's Auxiliary Nasmyth Infrared Camera) is a near-infrared camera designed to operate at any one of the f/11 folded ports of the 6.5m Magellan telescopes at Las Campanas Observatory, Chile. The instrument is built around a simple, all-refractive design that reimages the Magellan focal plane to a plate scale of 0.125" pixel(-1) onto a Rockwell 1024x1024 HgCdTe detector. The design goals for PANIC included excellent image quality to sample the superb seeing measured with the Magellan telescopes, high throughput, a relatively short construction time, and low cost. PANIC has now been in regular operation for over one year and has proved to be highly reliable and produce excellent images. The best recorded image quality has been similar to0.2" FWHM.
View Full Publication open_in_new
Abstract
In the era of large-scale spectroscopic surveys in the Local Group, we can explore using chemical abundances of halo stars to study the star formation and chemical enrichment histories of the dwarf galaxy progenitors of the Milky Way (MW) and M31 stellar halos. In this paper, we investigate using the chemical abundance ratio distributions (CARDs) of seven stellar halos from the Latte suite of FIRE-2 simulations. We attempt to infer galaxies' assembly histories by modeling the CARDs of the stellar halos of the Latte galaxies as a linear combination of template CARDs from disrupted dwarfs, with different stellar masses M (& x22c6;) and quenching times t (100). We present a method for constructing these templates using present-day dwarf galaxies. For four of the seven Latte halos studied in this work, we recover the mass spectrum of accreted dwarfs to a precision of t (100), we find the residuals of 20%-30% for five of the seven simulations. We discuss the failure modes of this method, which arise from the diversity of star formation and chemical enrichment histories that dwarf galaxies can take. These failure cases can be robustly identified by the high model residuals. Although the CARDs modeling method does not successfully infer the assembly histories in these cases, the CARDs of these disrupted dwarfs contain signatures of their unusual formation histories. Our results are promising for using CARDs to learn more about the histories of the progenitors of the MW and M31 stellar halos.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 378
  • Page 379
  • Page 380
  • Page 381
  • Current page 382
  • Page 383
  • Page 384
  • Page 385
  • Page 386
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025