Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Gravitational-wave detections are nowprobing the black hole (BH) mass distribution, including the predicted pair-instability mass gap. These data require robust quantitative predictions, which are challenging to obtain. The most massive BH progenitors experience episodic mass ejections on time-scales shorter than the convective turnover time-scale. This invalidates the steady-state assumption on which the classic mixing length theory relies. We compare the final BH masses computed with two different versions of the stellar evolutionary code MESA: (i) using the default implementation of Paxton et al. (2018) and (ii) solving an additional equation accounting for the time-scale for convective deceleration. In the second grid, where stronger convection develops during the pulses and carries part of the energy, we find weaker pulses. This leads to lower amounts of mass being ejected and thus higher final BH masses of up to similar to 5 M-circle dot. The differences are much smaller for the progenitors that determine the maximum mass of BHs below the gap. This prediction is robust at M-BH,M- max similar or equal to 48 M-circle dot, at least within the idealized context of this study. This is an encouraging indication that current models are robust enough for comparison with the present-day gravitational-wave detections. However, the large differences between individual models emphasize the importance of improving the treatment of convection in stellar models, especially in the light of the data anticipated from the third generation of gravitational-wave detectors.
View Full Publication open_in_new
Abstract
Helium star-carbon-oxygen white dwarf (CO WD) binaries are potential single-degenerate progenitor systems of thermonuclear supernovae. Revisiting a set of binary evolution calculations using the stellar evolution code MESA, we refine our previous predictions about which systems can lead to a thermonuclear supernova and then characterize the properties of the helium star donor at the time of explosion. We convert these model properties to near-UV/optical magnitudes assuming a blackbody spectrum and support this approach using a matched stellar atmosphere model. These models will be valuable to compare with pre-explosion imaging for future supernovae, though we emphasize the observational difficulty of detecting extremely blue companions. The pre-explosion source detected in association with SN 2012Z has been interpreted as a helium star binary containing an initially ultra-massive WD in a multiday orbit. However, extending our binary models to initial CO WD masses of up to 1.2 M (circle dot), we find that these systems undergo off-center carbon ignitions and thus are not expected to produce thermonuclear supernovae. This tension suggests that, if SN 2012Z is associated with a helium star-WD binary, then the pre-explosion optical light from the system must be significantly modified by the binary environment and/or the WD does not have a carbon-rich interior composition.
View Full Publication open_in_new
Abstract
The majority of massive stars live in binary or multiple systems and will interact with a companion during their lifetimes, which helps to explain the observed diversity of core-collapse supernovae. Donor stars in binary systems can lose most of their hydrogen-rich envelopes through mass transfer. As a result, not only are the surface properties affected, but so is the core structure. However, most calculations of the core-collapse properties of massive stars rely on single-star models. We present a systematic study of the difference between the pre-supernova structures of single stars and stars of the same initial mass (11-21M(circle dot)) that have been stripped due to stable post-main-sequence mass transfer at solar metallicity. We present the pre-supernova core composition with novel diagrams that give an intuitive representation of the isotope distribution. As shown in previous studies, at the edge of the carbon-oxygen core, the binary-stripped star models contain an extended gradient of carbon, oxygen, and neon. This layer remains until core collapse and is more extended in mass for higher initial stellar masses. It originates from the receding of the convective helium core during core helium burning in binary-stripped stars, which does not occur in single-star models. We find that this same evolutionary phase leads to systematic differences in the final density and nuclear energy generation profiles. Binary-stripped star models have systematically higher total masses of carbon at the moment of core collapse compared to single-star models, which likely results in systematically different supernova yields. In about half of our models, the silicon-burning and oxygen-rich layers merge after core silicon burning. We discuss the implications of our findings for the "explodability", supernova observations, and nucleosynthesis of these stars. Our models are publicly available and can be readily used as input for detailed supernova simulations.
View Full Publication open_in_new
Abstract
Most massive stars are born in binaries close enough for mass transfer episodes. These modify the appearance, structure, and future evolution of both stars. We compute the evolution of a 100-day-period binary, consisting initially of a 25 M (circle dot) star and a 17 M (circle dot) star, which experiences stable mass transfer. We focus on the impact of mass accretion on the surface composition, internal rotation, and structure of the accretor. To anchor our models, we show that our accretor broadly reproduces the properties of zeta Ophiuchi, which has long been proposed to have accreted mass before being ejected as a runaway star when the companion exploded. We compare our accretor to models of single rotating stars and find that the later and stronger spin-up provided by mass accretion produces significant differences. Specifically, the core of the accretor retains higher spin at the end of the main sequence, and a convective layer develops that changes its density profile. Moreover, the surface of the accretor star is polluted by CNO-processed material donated by the companion. Our models show effects of mass accretion in binaries that are not captured in single rotating stellar models. This possibly impacts the further evolution (either in a binary or as single stars), the final collapse, and the resulting spin of the compact object.
View Full Publication open_in_new
Abstract
While most simulations of the epoch of reionization have focused on single-stellar populations in star-forming dwarf galaxies, products of binary evolution are expected to significantly contribute to emissions of hydrogen-ionizing photons. Among these products are stripped stars (or helium stars), which have their envelopes stripped from interactions with binary companions, leaving an exposed helium core. Previous work has suggested these stripped stars can dominate the Lyman Continuum (LyC) photon output of high-redshift, low-luminosity galaxies post-starburst. Other sources of hard radiation in the early universe include zero-metallicity Population III stars, which may have similar spectral energy distribution (SED) properties to galaxies with radiation dominated by stripped-star emissions. Here, we use four metrics (the power-law exponent over wavelength intervals 240-500 angstrom, 600-900 angstrom, and 1200-2000 angstrom, and the ratio of total luminosity in FUV wavelengths to LyC wavelengths) to compare the SEDs of simulated galaxies with only single-stellar evolution, galaxies containing stripped stars, and galaxies containing Population iii stars, with four different initial mass functions (IMFs). We find that stripped stars significantly alter SEDs in the LyC range of galaxies at the epoch of reionization. SEDs in galaxies with stripped stars have lower power-law indices in the LyC range and lower FUV to LyC luminosity ratios. These differences in SEDs are present at all considered luminosities (M-UV > -15, AB system), and are most pronounced for lower-luminosity galaxies. Intrinsic SEDs as well as those with interstellar medium absorption of galaxies with stripped stars and Population iii stars are found to be distinct for all tested Population III IMFs.
View Full Publication open_in_new
Abstract
Cosmochemical evidence for the existence of short-lived radioisotopes (SLRIs) such as (26)Al and (60)Fe at the time of the formation of primitive meteorites requires that these isotopes were synthesized in a massive star and then incorporated into chondrites within similar to 10(6) yr. A supernova shock wave has long been hypothesized to have transported the SLRIs to the presolar dense cloud core, triggered cloud collapse, and injected the isotopes. Previous numerical calculations have shown that this scenario is plausible when the shock wave and dense cloud core are assumed to be isothermal at similar to 10 K, but not when compressional heating to similar to 1000 K is assumed. We show here for the first time that when calculated with the FLASH2.5 adaptive mesh refinement (AMR) hydrodynamics code, a 20 km s(-1) shock wave can indeed trigger the collapse of a 1 M(circle dot) cloud while simultaneously injecting M, shock wave isotopes into the collapsing cloud, provided that cooling by molecular species such as H(2)O, CO(2), and H(2) is included. These calculations imply that the supernova trigger hypothesis is the most likely mechanism for delivering the SLRIs present during the formation of the solar system.
View Full Publication open_in_new
Abstract
We present an exquisite 30 minute cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi-color Panoramic Survey Telescope (Pan-STARRS1) and Rapid Response System 1 and Cerro Tololo Inter-American Observatory 4 m Dark Energy Camera (CTIO 4-m DECam) observations obtained within hours of explosion. The K2 light curve has an unusual two-component shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical supernovae (SNe). Ia. This "flux excess" relative to canonical SN. Ia behavior is confirmed in our i-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14 +/- 0.04 days after explosion, has a FWHM of 3.12 +/- 0.04 days, a blackbody temperature of T=17,500(-9,000)(+11,500) K, a peak luminosity of 4.3 +/- 0.2 x 10(37) erg s(-1), and a total integrated energy of 1.27 +/- 0.01 x 10(43) erg. We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of similar to 2x10(12) cm based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system.
View Full Publication open_in_new
Abstract
We present observations and modeling of SN 2016hnk, a Ca-rich supernova (SN) that is consistent with being the result of a He-shell double-detonation explosion of a C/O white dwarf. We find that SN 2016hnk is intrinsically red relative to typical thermonuclear SNe and has a relatively low peak luminosity (M-B = -15.4 mag), setting it apart from low-luminosity SNe Ia. SN 2016hnk has a fast-rising light curve that is consistent with other Ca-rich transients (t(r) = 15 days). We determine that SN 2016hnk produced 0.03 +/- 0.01 M-circle dot of Ni-56 and 0.9 +/- 0.3 M-circle dot of ejecta. The o photospheric spectra show strong, high-velocity Ca II absorption and significant line blanketing at lambda < 5000 angstrom, making it distinct from typical (SN 2005E-like) Ca-rich SNe. SN 2016hnk is remarkably similar to SN 2018byg, which was modeled as a He-shell double-detonation explosion. We demonstrate that the spectra and light curves of SN 2016hnk are well modeled by the detonation of a 0.02 M-circle dot helium shell on the surface of a 0.85 M-circle dot C/O white dwarf. This analysis highlights the second observed case of a He-shell double-detonation and suggests a specific thermonuclear explosion that is physically distinct from SNe that are defined simply by their low luminosities and strong [Ca II] emission.
View Full Publication open_in_new
Abstract
We present nebular spectra of the Type Ia supernova (SN Ia) SN.2019yvq, which had a bright flash of blue and ultraviolet light after exploding, followed by a rise similar to other SNe.Ia. Although SN.2019yvq displayed several other rare characteristics, such as persistent high ejecta velocity near peak brightness, it was not especially peculiar, and if the early "excess" emission were not observed, it would likely be included in cosmological samples. The excess flux can be explained by several different physical models linked to the details of the progenitor system and explosion mechanism. Each has unique predictions for the optically thin emission at late times. In our nebular spectra, we detect strong [Ca II] lambda lambda 7291, 7324 and Ca.near-IR.triplet emission, consistent with a double-detonation explosion. We do not detect H, He, or [O I] emission, predictions for some singledegenerate progenitor systems and violent white dwarf mergers. The amount of swept-up H or He is <2.8.x.10(-4) and 2.4.x 10(-4) M-circle dot, respectively. Aside from strong Ca emission, the SN.2019yvq nebular spectrum is similar to those of typical SNe.Ia with the same light-curve shape. Comparing to double-detonation models, we find that the Ca emission is consistent with a model with a total progenitor mass of 1.15. M-circle dot. However, we note that a lower progenitor mass better explains the early light-curve and peak luminosity. The unique properties of SN.2019yvq suggest that thick He-shell double detonations only account for 1.1(-1.1)(+12.1)% of the total "normal" SN.Ia rate. The SN.2019yvq is one of the best examples yet that multiple progenitor channels appear necessary to reproduce the full diversity of "normal" SNe.Ia.
View Full Publication open_in_new
Abstract
A thermonuclear explosion triggered by a He-shell detonation on a carbon-oxygen white-dwarf core has been predicted to have strong UV line blanketing at early times due to the iron-group elements produced during He-shell burning. We present the photometric and spectroscopic observations of SN 2016dsg, a subluminous peculiar Type I supernova consistent with a thermonuclear explosion involving a thick He shell. With a redshift of 0.04, the i-band peak absolute magnitude is derived to be around -17.5. The object is located far away from its host, an early-type galaxy, suggesting it originated from an old stellar population. The spectra collected after the peak are unusually red, show strong UV line blanketing and weak O i lambda 7773 absorption lines, and do not evolve significantly over 30 days. An absorption line around 9700-10500 angstrom is detected in the near-infrared spectrum and is likely from the unburnt He in the ejecta. The spectroscopic evolution is consistent with the thermonuclear explosion models for a sub-Chandrasekhar-mass white dwarf with a thick He shell, while the photometric evolution is not well described by existing models.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 378
  • Page 379
  • Page 380
  • Page 381
  • Current page 382
  • Page 383
  • Page 384
  • Page 385
  • Page 386
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025