Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The majority of massive stars live in binary or multiple systems and will interact with a companion during their lifetimes, which helps to explain the observed diversity of core-collapse supernovae. Donor stars in binary systems can lose most of their hydrogen-rich envelopes through mass transfer. As a result, not only are the surface properties affected, but so is the core structure. However, most calculations of the core-collapse properties of massive stars rely on single-star models. We present a systematic study of the difference between the pre-supernova structures of single stars and stars of the same initial mass (11-21M(circle dot)) that have been stripped due to stable post-main-sequence mass transfer at solar metallicity. We present the pre-supernova core composition with novel diagrams that give an intuitive representation of the isotope distribution. As shown in previous studies, at the edge of the carbon-oxygen core, the binary-stripped star models contain an extended gradient of carbon, oxygen, and neon. This layer remains until core collapse and is more extended in mass for higher initial stellar masses. It originates from the receding of the convective helium core during core helium burning in binary-stripped stars, which does not occur in single-star models. We find that this same evolutionary phase leads to systematic differences in the final density and nuclear energy generation profiles. Binary-stripped star models have systematically higher total masses of carbon at the moment of core collapse compared to single-star models, which likely results in systematically different supernova yields. In about half of our models, the silicon-burning and oxygen-rich layers merge after core silicon burning. We discuss the implications of our findings for the "explodability", supernova observations, and nucleosynthesis of these stars. Our models are publicly available and can be readily used as input for detailed supernova simulations.
View Full Publication open_in_new
Abstract
Most massive stars are born in binaries close enough for mass transfer episodes. These modify the appearance, structure, and future evolution of both stars. We compute the evolution of a 100-day-period binary, consisting initially of a 25 M (circle dot) star and a 17 M (circle dot) star, which experiences stable mass transfer. We focus on the impact of mass accretion on the surface composition, internal rotation, and structure of the accretor. To anchor our models, we show that our accretor broadly reproduces the properties of zeta Ophiuchi, which has long been proposed to have accreted mass before being ejected as a runaway star when the companion exploded. We compare our accretor to models of single rotating stars and find that the later and stronger spin-up provided by mass accretion produces significant differences. Specifically, the core of the accretor retains higher spin at the end of the main sequence, and a convective layer develops that changes its density profile. Moreover, the surface of the accretor star is polluted by CNO-processed material donated by the companion. Our models show effects of mass accretion in binaries that are not captured in single rotating stellar models. This possibly impacts the further evolution (either in a binary or as single stars), the final collapse, and the resulting spin of the compact object.
View Full Publication open_in_new
Abstract
While most simulations of the epoch of reionization have focused on single-stellar populations in star-forming dwarf galaxies, products of binary evolution are expected to significantly contribute to emissions of hydrogen-ionizing photons. Among these products are stripped stars (or helium stars), which have their envelopes stripped from interactions with binary companions, leaving an exposed helium core. Previous work has suggested these stripped stars can dominate the Lyman Continuum (LyC) photon output of high-redshift, low-luminosity galaxies post-starburst. Other sources of hard radiation in the early universe include zero-metallicity Population III stars, which may have similar spectral energy distribution (SED) properties to galaxies with radiation dominated by stripped-star emissions. Here, we use four metrics (the power-law exponent over wavelength intervals 240-500 angstrom, 600-900 angstrom, and 1200-2000 angstrom, and the ratio of total luminosity in FUV wavelengths to LyC wavelengths) to compare the SEDs of simulated galaxies with only single-stellar evolution, galaxies containing stripped stars, and galaxies containing Population iii stars, with four different initial mass functions (IMFs). We find that stripped stars significantly alter SEDs in the LyC range of galaxies at the epoch of reionization. SEDs in galaxies with stripped stars have lower power-law indices in the LyC range and lower FUV to LyC luminosity ratios. These differences in SEDs are present at all considered luminosities (M-UV > -15, AB system), and are most pronounced for lower-luminosity galaxies. Intrinsic SEDs as well as those with interstellar medium absorption of galaxies with stripped stars and Population iii stars are found to be distinct for all tested Population III IMFs.
View Full Publication open_in_new
Abstract
Cosmochemical evidence for the existence of short-lived radioisotopes (SLRIs) such as (26)Al and (60)Fe at the time of the formation of primitive meteorites requires that these isotopes were synthesized in a massive star and then incorporated into chondrites within similar to 10(6) yr. A supernova shock wave has long been hypothesized to have transported the SLRIs to the presolar dense cloud core, triggered cloud collapse, and injected the isotopes. Previous numerical calculations have shown that this scenario is plausible when the shock wave and dense cloud core are assumed to be isothermal at similar to 10 K, but not when compressional heating to similar to 1000 K is assumed. We show here for the first time that when calculated with the FLASH2.5 adaptive mesh refinement (AMR) hydrodynamics code, a 20 km s(-1) shock wave can indeed trigger the collapse of a 1 M(circle dot) cloud while simultaneously injecting M, shock wave isotopes into the collapsing cloud, provided that cooling by molecular species such as H(2)O, CO(2), and H(2) is included. These calculations imply that the supernova trigger hypothesis is the most likely mechanism for delivering the SLRIs present during the formation of the solar system.
View Full Publication open_in_new
Abstract
We present an exquisite 30 minute cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi-color Panoramic Survey Telescope (Pan-STARRS1) and Rapid Response System 1 and Cerro Tololo Inter-American Observatory 4 m Dark Energy Camera (CTIO 4-m DECam) observations obtained within hours of explosion. The K2 light curve has an unusual two-component shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical supernovae (SNe). Ia. This "flux excess" relative to canonical SN. Ia behavior is confirmed in our i-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14 +/- 0.04 days after explosion, has a FWHM of 3.12 +/- 0.04 days, a blackbody temperature of T=17,500(-9,000)(+11,500) K, a peak luminosity of 4.3 +/- 0.2 x 10(37) erg s(-1), and a total integrated energy of 1.27 +/- 0.01 x 10(43) erg. We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of similar to 2x10(12) cm based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system.
View Full Publication open_in_new
Abstract
We present observations and modeling of SN 2016hnk, a Ca-rich supernova (SN) that is consistent with being the result of a He-shell double-detonation explosion of a C/O white dwarf. We find that SN 2016hnk is intrinsically red relative to typical thermonuclear SNe and has a relatively low peak luminosity (M-B = -15.4 mag), setting it apart from low-luminosity SNe Ia. SN 2016hnk has a fast-rising light curve that is consistent with other Ca-rich transients (t(r) = 15 days). We determine that SN 2016hnk produced 0.03 +/- 0.01 M-circle dot of Ni-56 and 0.9 +/- 0.3 M-circle dot of ejecta. The o photospheric spectra show strong, high-velocity Ca II absorption and significant line blanketing at lambda < 5000 angstrom, making it distinct from typical (SN 2005E-like) Ca-rich SNe. SN 2016hnk is remarkably similar to SN 2018byg, which was modeled as a He-shell double-detonation explosion. We demonstrate that the spectra and light curves of SN 2016hnk are well modeled by the detonation of a 0.02 M-circle dot helium shell on the surface of a 0.85 M-circle dot C/O white dwarf. This analysis highlights the second observed case of a He-shell double-detonation and suggests a specific thermonuclear explosion that is physically distinct from SNe that are defined simply by their low luminosities and strong [Ca II] emission.
View Full Publication open_in_new
Abstract
We present nebular spectra of the Type Ia supernova (SN Ia) SN.2019yvq, which had a bright flash of blue and ultraviolet light after exploding, followed by a rise similar to other SNe.Ia. Although SN.2019yvq displayed several other rare characteristics, such as persistent high ejecta velocity near peak brightness, it was not especially peculiar, and if the early "excess" emission were not observed, it would likely be included in cosmological samples. The excess flux can be explained by several different physical models linked to the details of the progenitor system and explosion mechanism. Each has unique predictions for the optically thin emission at late times. In our nebular spectra, we detect strong [Ca II] lambda lambda 7291, 7324 and Ca.near-IR.triplet emission, consistent with a double-detonation explosion. We do not detect H, He, or [O I] emission, predictions for some singledegenerate progenitor systems and violent white dwarf mergers. The amount of swept-up H or He is <2.8.x.10(-4) and 2.4.x 10(-4) M-circle dot, respectively. Aside from strong Ca emission, the SN.2019yvq nebular spectrum is similar to those of typical SNe.Ia with the same light-curve shape. Comparing to double-detonation models, we find that the Ca emission is consistent with a model with a total progenitor mass of 1.15. M-circle dot. However, we note that a lower progenitor mass better explains the early light-curve and peak luminosity. The unique properties of SN.2019yvq suggest that thick He-shell double detonations only account for 1.1(-1.1)(+12.1)% of the total "normal" SN.Ia rate. The SN.2019yvq is one of the best examples yet that multiple progenitor channels appear necessary to reproduce the full diversity of "normal" SNe.Ia.
View Full Publication open_in_new
Abstract
A thermonuclear explosion triggered by a He-shell detonation on a carbon-oxygen white-dwarf core has been predicted to have strong UV line blanketing at early times due to the iron-group elements produced during He-shell burning. We present the photometric and spectroscopic observations of SN 2016dsg, a subluminous peculiar Type I supernova consistent with a thermonuclear explosion involving a thick He shell. With a redshift of 0.04, the i-band peak absolute magnitude is derived to be around -17.5. The object is located far away from its host, an early-type galaxy, suggesting it originated from an old stellar population. The spectra collected after the peak are unusually red, show strong UV line blanketing and weak O i lambda 7773 absorption lines, and do not evolve significantly over 30 days. An absorption line around 9700-10500 angstrom is detected in the near-infrared spectrum and is likely from the unburnt He in the ejecta. The spectroscopic evolution is consistent with the thermonuclear explosion models for a sub-Chandrasekhar-mass white dwarf with a thick He shell, while the photometric evolution is not well described by existing models.
View Full Publication open_in_new
Abstract
Calcium-rich (Ca-rich) transients are a new class of supernovae (SNe) that are known for their comparatively rapid evolution, modest peak luminosities, and strong nebular calcium emission lines. Currently, the progenitor systems of Ca-rich transients remain unknown. Although they exhibit spectroscopic properties not unlike core-collapse Type Ib/c SNe, nearly half are found in the outskirts of their host galaxies, which are predominantly elliptical, suggesting a closer connection to the older stellar populations of SNe Ia. In this paper, we present a compilation of publicly available multiwavelength observations of all known and/or suspected host galaxies of Ca-rich transients ranging from far-UV to IR, and use these data to characterize their stellar populations with prospector. We estimate several galaxy parameters including integrated star formation rate, stellar mass, metallicity, and age. For nine host galaxies, the observations are sensitive enough to obtain nonparametric star formation histories, from which we recover SN rates and estimate probabilities that the Ca-rich transients in each of these host galaxies originated from a core-collapse versus Type Ia-like explosion. Our work supports the notion that the population of Ca-rich transients do not come exclusively from core-collapse explosions, and must either be only from white dwarf stars or a mixed population of white dwarf stars with other channels, potentially including massive star explosions. Additional photometry and explosion site spectroscopy of larger samples of Ca-rich host galaxies will improve these estimates and better constrain the ratio of white dwarf versus massive star progenitors of Ca-rich transients.
View Full Publication open_in_new
Abstract
The COS Legacy Archive Spectroscopic SurveY (CLASSY) is designed to provide the community with a spectral atlas of 45 nearby star-forming galaxies that were chosen to cover similar properties to those seen at high z (z > 6). The prime high-level science product of CLASSY is accurately coadded UV spectra, ranging from similar to 1000 to 2000 angstrom, derived from a combination of archival and new data obtained with HST's Cosmic Origins Spectrograph (COS). This paper details the multistage technical processes of creating this prime data product and the methodologies involved in extracting, reducing, aligning, and coadding far-ultraviolet and near-ultraviolet (NUV) spectra. We provide guidelines on how to successfully utilize COS observations of extended sources, despite COS being optimized for point sources, and best-practice recommendations for the coaddition of UV spectra in general. Moreover, we discuss the effects of our reduction and coaddition techniques in the scientific application of the CLASSY data. In particular, we find that accurately accounting for flux calibration offsets can affect the derived properties of the stellar populations, while customized extractions of NUV spectra for extended sources are essential for correctly diagnosing the metallicity of galaxies via C iii] nebular emission. Despite changes in spectral resolution of up to similar to 25% between individual data sets (due to changes in the COS line-spread function), no adverse affects were observed on the difference in velocity width and outflow velocities of isolated absorption lines when measured in the final combined data products, owing in part to our signal-to-noise regime of S/N < 20.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 379
  • Page 380
  • Page 381
  • Page 382
  • Current page 383
  • Page 384
  • Page 385
  • Page 386
  • Page 387
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025