Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Context. A majority of massive stars are part of binary systems, a large fraction of which will inevitably interact during their lives. Binary-interaction products (BiPs), that is, stars affected by such interaction, are expected to be commonly present in stellar populations. BiPs are thus a crucial ingredient in the understanding of stellar evolution.Aims. We aim to identify and characterize a statistically significant sample of BiPs by studying clusters of 10-40 Myr, an age at which binary population models predict the abundance of BiPs to be highest. One example of such a cluster is NGC 330 in the Small Magellanic Cloud.Methods. Using MUSE WFM-AO observations of NGC 330, we resolved the dense cluster core for the first time and were able to extract spectra of its entire massive star population. We developed an automated spectral classification scheme based on the equivalent widths of spectral lines in the red part of the spectrum.Results. We characterize the massive star content of the core of NGC 330, which contains more than 200 B stars, 2 O stars, 6 A-type supergiants, and 11 red supergiants. We find a lower limit on the Be star fraction of 323% in the whole sample. It increases to at least 46 +/- 10% when we only consider stars brighter than V=17 mag. We estimate an age of the cluster core between 35 and 40 Myr and a total cluster mass of
View Full Publication open_in_new
Abstract
Hydrogen-rich supernovae, known as Type II (SNe II), are the most common class of explosions observed following the collapse of the core of massive stars. We used analytical estimates and population synthesis simulations to assess the fraction of SNe II progenitors that are expected to have exchanged mass with a companion prior to explosion. We estimate that 1/3 to 1/2 of SN II progenitors have a history of mass exchange with a binary companion before exploding. The dominant binary channels leading to SN II progenitors involve the merger of binary stars. Mergers are expected to produce a diversity of SN II progenitor characteristics, depending on the evolutionary timing and properties of the merger. Alternatively, SN II progenitors from interacting binaries may have accreted mass from their companion, and subsequently been ejected from the binary system after their companion exploded. We show that the overall fraction of SN II progenitors that are predicted to have experienced binary interaction is robust against the main physical uncertainties in our models. However, the relative importance of different binary evolutionary channels is affected by changing physical assumptions. We further discuss ways in which binarity might contribute to the observed diversity of SNe II by considering potential observational signatures arising from each binary channel. For supernovae which have a substantial H-rich envelope at explosion (i.e., excluding Type IIb SNe), a surviving non-compact companion would typically indicate that the supernova progenitor star was in a wide, non-interacting binary. We argue that a significant fraction of even Type II-P SNe are expected to have gained mass from a companion prior to explosion.
View Full Publication open_in_new
Abstract
Massive stars are often found in binary systems, and it has been argued that binary products boost the ionizing radiation of stellar populations. Accurate predictions for binary products are needed to understand and quantify their contribution to cosmic reionization. We investigate the contribution of stars stripped in binaries because (1) they are, arguably, the best-understood products of binary evolution, (2) we recently produced the first radiative transfer calculations for the atmospheres of these stripped stars that predict their ionizing spectra, and (3) they are very promising sources because they boost the ionizing emission of stellar populations at late times. This allows stellar feedback to clear the surroundings such that a higher fraction of their photons can escape and ionize the intergalactic medium. Combining our detailed predictions for the ionizing spectra with a simple cosmic reionization model, we estimate that stripped stars contributed tens of percent of the photons that caused cosmic reionization of hydrogen, depending on the assumed escape fractions. More importantly, stripped stars harden the ionizing emission. We estimate that the spectral index for the ionizing part of the spectrum can increase to -1 compared to less than or similar to - 2 for single stars. At high redshift, stripped stars and massive single stars combined dominate the He II-ionizing emission, but we expect that active galactic nuclei drive cosmic helium reionization. Further observational consequences we expect are (1) high ionization states for the intergalactic gas surrounding stellar systems, such as C IV and Si IV, and (2) additional heating of the intergalactic medium of up to a few thousand Kelvin. Quantifying these warrants the inclusion of accurate models for stripped stars and other binary products in full cosmological simulations.
View Full Publication open_in_new
Abstract
Present and upcoming time-domain astronomy efforts, in part driven by gravitational-wave follow-up campaigns, will unveil a variety of rare explosive transients in the sky. Here, we focus on pulsational pair-instability evolution, which can result in signatures that are observable with electromagnetic and gravitational waves. We simulated grids of bare helium stars to characterize the resulting black hole (BH) masses together with the ejecta composition, velocity, and thermal state. We find that the stars do not react "elastically" to the thermonuclear ignition in the core: there is not a one-to-one correspondence between pair-instability driven ignition and mass ejections, which causes ambiguity as to what is an observable pulse. In agreement with previous studies, we find that for initial helium core masses of 37.5 M-circle dot less than or similar to M-He,M- init less than or similar to 41 M-circle dot, corresponding to carbon-oxygen core masses 27.5 M-circle dot less than or similar to M-CO less than or similar to 30.1 M-circle dot, the explosions are not strong enough to affect the surface. With increasing initial helium core mass, they become progressively stronger causing first large radial expansion (41 M-circle dot less than or similar to M-He,M- init less than or similar to 42 M-circle dot, corresponding to 30.1 M-circle dot less than or similar to M-CO less than or similar to 30.8 M-circle dot) and, finally, also mass ejection episodes (for M-He,M- init greater than or similar to 42 M-circle dot, or M-CO greater than or similar to 30.8 M-circle dot). The lowest mass helium core to be fully disrupted in a pair-instability supernova is M-He,M- init similar or equal to 80 M-circle dot, corresponding to M-CO similar or equal to 55 M-circle dot. Models with M-He,M- init greater than or similar to 200 M-circle dot (M-CO greater than or similar to 114 M-circle dot) reach the photodisintegration regime, resulting in BHs with masses of M-BH greater than or similar to 125 M-circle dot. Although this is currently considered unlikely, if BHs from these models form via (weak) explosions, the previously-ejected material might be hit by the blast wave and convert kinetic energy into observable electromagnetic radiation. We characterize the hydrogen-free circumstellar material from the pulsational pair-instability of helium cores by simply assuming that the ejecta maintain a constant velocity after ejection. We find that our models produce helium-rich ejecta with mass of 10(-3) M-circle dot less than or similar to M-CSM less than or similar to 40 M-circle dot, the larger values corresponding to the more massive progenitor stars. These ejecta are typically launched at a few thousand km s(-1) and reach distances of similar to 10(12)-10(15) cm before the core-collapse of the star. The delays between mass ejection events and the final collapse span a wide and mass-dependent range (from subhour to 10(4) years), and the shells ejected can also collide with each other, powering supernova impostor events before the final core-collapse. The range of properties we find suggests a possible connection with (some) type Ibn supernovae.
View Full Publication open_in_new
Abstract
High-resolution numerical simulations including feedback and aimed at calculating the escape fraction (f(esc)) of hydrogen-ionizing photons often assume stellar radiation based on single-stellar population synthesis models. However, strong evidence suggests the binary fraction of massive stars is greater than or similar to 70%. Moreover, simulations so far have yielded values of f(esc) falling only on the lower end of the similar to 10%-20% range, the amount presumed necessary to reionize the universe. Analyzing a high-resolution (4 pc) cosmological radiation-hydrodynamic simulation, we study how f(esc) changes when we include two different products of binary stellar evolution-stars stripped of their hydrogen envelopes and massive blue stragglers. Both produce significant amounts of ionizing photons 10-200 Myr after each starburst. We find the relative importance of these photons to be amplified with respect to escaped ionizing photons, because peaks in star formation rates (SFRs) and f(esc) are often out of phase by this 10-200 Myr. Additionally, low-mass, bursty galaxies emit Lyman continuum radiation primarily from binary products when SFRs are low. Observations of these galaxies by the James Webb Space Telescope could provide crucial information on the evolution of binary stars as a function of redshift. Overall, including stripped stars and massive blue stragglers increases our photon-weighted mean escape fraction (< f(esc)>) by similar to 13% and similar to 10%, respectively, resulting in a < f(esc)> = 17%. Our results emphasize that using updated stellar population synthesis models with binary stellar evolution provides a more sound physical basis for stellar reionization.
View Full Publication open_in_new
Abstract
Binary interaction can cause stellar envelopes to be stripped, which significantly reduces the radius of the star. The orbit of a binary composed of a stripped star and a compact object can therefore be so tight that the gravitational radiation the system produces reaches frequencies accessible to the Laser Interferometer Space Antenna (LISA). Two such stripped stars in tight orbits with white dwarfs are known so far (ZTF J2130+4420 and CD-30 degrees 11223), but many more are expected to exist. These binaries provide important constraints for binary evolution models and may be used as LISA verification sources. We develop a Monte Carlo code that uses detailed evolutionary models to simulate the Galactic population of stripped stars in tight orbits with either neutron star or white dwarf companions. We predict 0-100 stripped star + white dwarf binaries and 0-4 stripped star + neutron star binaries with a signal-to-noise ratio >5 after 10 yr of observations with LISA. More than 90% of these binaries are expected to show large radial velocity shifts of greater than or similar to 200 km s(-1), which are spectroscopically detectable. Photometric variability due to tidal deformation of the stripped star is also expected and has been observed in ZTF J2130+4420 and CD-30 degrees 11223. In addition, the stripped star + neutron star binaries are expected to be X-ray bright with L-X greater than or similar to 10(33)-10(36) erg s(-1). Our results show that stripped star binaries are promising multimessenger sources for the upcoming electromagnetic and gravitational wave facilities.
View Full Publication open_in_new
Abstract
Massive binaries that merge as compact objects are the progenitors of gravitational-wave sources. Most of these binaries experience one or more phases of mass transfer, during which one of the stars loses all or part of its outer envelope and becomes a stripped-envelope star. The evolution of the size of these stripped stars is crucial in determining whether they experience further interactions and understanding their ultimate fate. We present new calculations of stripped-envelope stars based on binary evolution models computed with MESA. We use these to investigate their radius evolution as a function of mass and metallicity. We further discuss their pre-supernova observable characteristics and potential consequences of their evolution on the properties of supernovae from stripped stars. At high metallicity, we find that practically all of the hydrogen-rich envelope is removed, which is in agreement with earlier findings. Only progenitors with initial masses below 10 M-circle dot expand to large radii (up to 100 R-circle dot), while more massive progenitors remain compact. At low metallicity, a substantial amount of hydrogen remains and the progenitors can, in principle, expand to giant sizes (> 400 R-circle dot) for all masses we consider. This implies that they can fill their Roche lobe anew. We show that the prescriptions commonly used in population synthesis models underestimate the stellar radii by up to two orders of magnitude. We expect that this has consequences for the predictions for gravitational-wave sources from double neutron star mergers, particularly with regard to their metallicity dependence.
View Full Publication open_in_new
Abstract
Most massive stars experience binary interactions in their lifetimes that can alter both the surface and core structure of the stripped star with significant effects on their ultimate fate as core-collapse supernovae. However, core-collapse supernovae simulations to date have focused almost exclusively on the evolution of single stars. We present a systematic simulation study of single and binary-stripped stars with the same initial mass as candidates for core-collapse supernovae (11-21 M (circle dot)). Generally, we find that binary-stripped stars core tend to have a smaller compactness parameter, with a more prominent, deeper silicon/oxygen interface, and explode preferentially to the corresponding single stars of the same initial mass. Such a dichotomy of behavior between these two modes of evolution would have important implications for supernovae statistics, including the final neutron star masses, explosion energies, and nucleosynthetic yields. Binary-stripped remnants are also well poised to populate the possible mass gap between the heaviest neutron stars and the lightest black holes. Our work presents an improvement along two fronts, as we self-consistently account for the pre-collapse stellar evolution and the subsequent explosion outcome. Even so, our results emphasize the need for more detailed stellar evolutionary models to capture the sensitive nature of explosion outcome.
View Full Publication open_in_new
Abstract
Context. Observations of massive stars in open clusters younger than similar to 8 Myr have shown that a majority of them are in binary systems, most of which will interact during their life. While these can be used as a proxy of the initial multiplicity properties, studying populations of massive stars older than similar to 20 Myr allows us to probe the outcome of these interactions after a significant number of systems have experienced mass and angular momentum transfer and may even have merged.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 377
  • Page 378
  • Page 379
  • Page 380
  • Current page 381
  • Page 382
  • Page 383
  • Page 384
  • Page 385
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025