Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present Hubble Space Telescope (HST) observations of the Type IIb supernova (SN) SN 2016gkg at 652, 1698, and 1795 days from explosion with the Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). Comparing to pre-explosion imaging from 2001 obtained with the Wide Field Planetary Camera 2, we demonstrate that SN 2016gkg is now fainter than its candidate counterpart in the latest WFC3 imaging, implying that the counterpart has disappeared and confirming that it was the SN progenitor star. We show the latest light curve and Keck spectroscopy of SN 2016gkg, which imply that SN 2016gkg is declining more slowly than the expected rate for Co-56 decay during its nebular phase. We find that this emission is too luminous to be powered by other radioisotopes and infer that SN 2016gkg is entering a new phase in its evolution where it is powered primarily by interaction with circumstellar matter. Finally, we reanalyze the progenitor star spectral energy distribution and late-time limits in the context of binary evolution models. Including emission from a potential companion star, we find that all such predicted companion stars would be fainter than our limiting magnitudes.
View Full Publication open_in_new
Abstract
The tidal interactions between a planet and moon can provide insight into the properties of the host planet. The recent exomoon candidates Kepler-1708 b-i and Kepler-1625 b-i are Neptune-sized satellites orbiting Jupiter-like planets and provide an opportunity to apply such methods. We show that if the tidal migration time is roughly equal to the age of these systems, then the tidal dissipation factor Q for the planets Kepler-1708 b and Kepler-1625 b have values of similar to 3 x 10(5)-3 x 10(6) and similar to 1.5 x 10(5)-4 x 10(5), respectively. In each case, these are consistent with estimates for gas-giant planets. Even though some work suggests an especially large semimajor axis for Kepler-1625 b-i, we find that this would imply a surprisingly low Q similar to 2000 for a gas giant unless the moon formed at essentially its current position. More detailed predictions for the moons' initial semimajor axis could provide even better constraints on Q, and we discuss the formation scenarios for a moon in this context. Similar arguments can be used as more exomoons are discovered in the future to constrain exoplanet interior properties. This could be especially useful for exoplanets near the sub-Neptune/super-Earth radius gap where the planet structure is uncertain.
View Full Publication open_in_new
Abstract
1991T-like supernovae are the luminous, slow-declining extreme of the Branch shallow-silicon (SS) subclass of Type Ia supernovae. They are distinguished by extremely weak Ca ii H & K and Si ii lambda 6355 and strong Fe iii absorption features in their optical spectra at pre-maximum phases, and have long been suspected to be over-luminous compared to normal Type Ia supernovae. In this paper, the pseudo-equivalent width of the Si ii lambda 6355 absorption obtained at light curve phases from <= +10 days is combined with the morphology of the i-band light curve to identify a sample of 1991T-like supernovae in the Carnegie Supernova Project II. Hubble diagram residuals show that, at optical as well as near-infrared wavelengths, these events are over-luminous by similar to 0.1-0.5 mag with respect to the less extreme Branch SS (1999aa-like) and Branch core-normal supernovae with similar B-band light-curve decline rates.
View Full Publication open_in_new
Bernstein Lecture
November 11, 2022
Campus News

Large turn out to first in-person Neighborhood Lecture in two years

Nicole Wallack

Nicole Wallack

Postdoctoral Fellow

Oded

Oded Elazar

Postdoctoral Fellow

Abstract
Chiral aminomethylnaphthols have been prepared highly diastereoselective by means of three-component `Betti condensation", using steroidal 2-naphthol analogue, synthesized from estrone. The use of 2-methoxybenzaldehyde or 2-pyridinecarboxaldehyde as aldehyde component and (S)-(-)-1-phenylethan-1-amine or (S)-(-)-1-(naphthalen-2-yl)ethan-1-amine, as chiral non-racemic amine component providing the diastereoselectivity, allowed the synthesis of structurally diverse aminomethylnaphthols. The latter easily form 1,3-dihydronaphthoxazines through reaction with formaldehyde. The absolute configurations of the new aminomethylnaphthols synthesized have been determined through advanced nuclear magnetic resonance (NMR) experiments and confirmed by X-ray crystallography. The chiral steroidal aminomethylnaphthols obtained as pure diastereoisomers have been evaluated as pre-catalysts in the enantioselective addition of diethylzinc to aldehydes with enantioselectivities of up to 97% ee.
View Full Publication open_in_new
Abstract
Tracing the deep geological water cycle requires knowledge of the hydrogen isotope systematics between and within hydrous materials. For quenched hydrous alkali-silicate melts, hydrogen NMR reveals a distinct heterogeneity in the distribution of stable hydrogen isotopes (D, H) within the silicate tetrahedral network, where deuterons concentrate strongly in network regions that are associated with alkali cations. Previous hydrogen NMR studies performed in the sodium tetrasilicate system (Na2O x 4SiO2, NS4) with a 1:1 D2O/H2O ratio showed on average 1300 %o deuterium enrichment in the alkali-associated network, but the effect on varying bulk D2O/ H2O ratios on this intramolecular isotope effect remained unconstrained. Experiments in the hydrous sodium tetrasilicate system with 8 wt% bulk water and varying bulk D2O/H2O ratios were performed at 1400 degrees C and 1.5 GPa. It is found that both hydrogen isotopes preferably partition into the silicate network that is associated with alkali ions. The partitioning is always stronger for the deuterated than for the protonated hydrous species. The relative enrichment of deuterium over protium in the alkali-associated network, i.e., the intramolecular isotope effect, correlates positively with the D2O/H2O bulk ratio of the hydrous NS4 system. Modeled for natural deuterium abundance (D/H near 1.56 x 10-4), a 1.4-fold (c. 340 %o) deuterium enrichment in the alkaliassociated silicate network is predicted. The partitioning model further predicts a positive correlation between the bulk water content of the silicate melt and the intramolecular deuterium partitioning into the alkaliassociated silicate network. Such heterogeneities may explain the magnitude and direction of hydrogen isotope fractionation in hydrous silicate melts coexisting with silicate-saturated fluids. As such, this intramolecular isotope effect appears to be an effective mechanism for deuterium separation, particularly in hydrous magmatic settings, such as subduction zones.
View Full Publication open_in_new
Abstract
Physiological and gene expression studies of deep-sea bacteria under pressure conditions similar to those experienced in their natural habitat are critical for understanding growth kinetics and metabolic adaptations to in situ conditions. The Campylobacterium (aka Epsilonproteobacterium) Nautilia sp. strain PV-1 was isolated from hydrothermal fluids released from an active deep-sea hydrothermal vent at 9° N on the East Pacific Rise. Strain PV-1 is a piezophilic, moderately thermophilic, chemolithoautotrophic anaerobe that conserves energy by coupling the oxidation of hydrogen to the reduction of nitrate or elemental sulfur. Using a high-pressure-high temperature continuous culture system, we established that strain PV-1 has the shortest generation time of all known piezophilic bacteria and we investigated its protein expression pattern in response to different hydrostatic pressure regimes. Proteogenomic analyses of strain PV-1 grown at 20 and 5MPa showed that pressure adaptation is not restricted to stress response or homeoviscous adaptation but extends to enzymes involved in central metabolic pathways. Protein synthesis, motility, transport, and energy metabolism are all affected by pressure, although to different extents. In strain PV-1, low-pressure conditions induce the synthesis of phage-related proteins and an overexpression of enzymes involved in carbon fixation.
View Full Publication open_in_new
Abstract
The atmospheres of gas giant planets are thought to be inhomogeneous due to weather and patchy clouds. We present two full nights of coronagraphic observations of the HR 8799 planets using the CHARIS integral field spectrograph behind the SCExAO adaptive optics system on the Subaru Telescope to search for spectrophomometric variability. We did not detect significant variability signals, but placed the lowest variability upper limits for HR 8799c and d. Based on injection-recovery tests, we expected to have a 50% chance to detect signals down to 10% H-band photometric variability for HR 8799c and down to 30% H-band variability for HR 8799d. We also investigated spectral variability and expected a 50% chance to recover 20% variability in the H/K flux ratio for HR 8799c. We combined all the data from the two nights to obtain some of the most precise spectra obtained for HR 8799c, d, and e. Using a grid of cloudy radiative-convective-thermochemical equilibrium models, we found all three planets prefer supersolar metallicity with effective temperatures of similar to 1100 K. However, our high signal-to-noise spectra show that HR 8799d has a distinct spectrum from HR 8799c, possibly preferring more vertically extended and uniform clouds and indicating that the planets are not identical.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 339
  • Page 340
  • Page 341
  • Page 342
  • Current page 343
  • Page 344
  • Page 345
  • Page 346
  • Page 347
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025