Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present observations of ZTF18abfcmjw (SN2019dge), a helium-rich supernova with a fast-evolving light curve indicating an extremely low ejecta mass (approximate to 0.33M(circle dot)) and low kinetic energy (approximate to 1.3 x 10(50)erg). Early-time (<4 days after explosion) photometry reveals evidence of shock cooling from an extended helium-rich envelope of similar to 0.1 M-circle dot located similar to 1.2 x 10(13) cm from the progenitor. Early-time He II line emission and subsequent spectra show signatures of interaction with helium-rich circumstellar material, which extends from greater than or similar to 5 x 10(13)cm to greater than or similar to 2 x 10(16)cm. We interpret SN2019dge as a helium-rich supernova from an ultra-stripped progenitor, which originates from a close binary system consisting of a mass-losing helium star and a low-mass main-sequence star or a compact object (i.e., a white dwarf, a neutron star, or a black hole). We infer that the local volumetric birth rate of 19dge-like ultra-stripped SNe is in the range of 1400-8200 Gpc(-3)yr(-1) (i.e., 2%-12% of core-collapse supernova rate). This can be compared to the observed coalescence rate of compact neutron star binaries that are not formed by dynamical capture.
View Full Publication open_in_new
Abstract
Exomoons may play an important role in determining the habitability of worlds outside of our solar system. They can stabilize conditions, alter the climate by breaking tidal locking with the parent star, drive tidal heating, and perhaps even host life themselves. However, the ability of an exoplanet to sustain an exomoon depends on complex tidal interactions. Motivated by this, we make use of simplified tidal lag models to follow the evolution of the separations and orbital and rotational periods in planet, star, and moon systems. We apply these models to known exoplanet systems to assess the potential for these exoplanets to host exomoons. We find that there are at least 36 systems in which an exoplanet in the habitable zone may host an exomoon for longer than one gigayear. This includes Kepler-1625b, an exoplanet with an exomoon candidate, which we determine would be able to retain a Neptune-sized moon for longer than a Hubble time. These results may help provide potential targets for future observation. In many cases, there remains considerable uncertainty in the composition of specific exoplanets. We show the detection (or not) of an exomoon would provide an important constraint on the planet structure due to differences in their tidal response.
View Full Publication open_in_new
Abstract
Following shock breakout, the emission from an astrophysical explosion is dominated by the radiation of shock-heated material as it expands and cools, known as shock cooling emission (SCE). The luminosity of SCE is proportional to the initial radius of the emitting material, which makes its measurement useful for investigating the progenitors of these explosions. Recent observations have shown some transient events have especially prominent SCE, indicating a large radius that is potentially due to low-mass extended material. Motivated by this, we present an updated analytic model for SCE that can be utilized to fit these observations and learn more about the origin of these events. This model is compared with numerical simulations to assess its validity and limitations. We also discuss SN 2016gkg and SN 2019dge, two transients with large early luminosity peaks that have previously been attributed to SCE of extended material. We show that their early power-law evolution and photometry are well matched by our model, strengthening support for this interpretation.
View Full Publication open_in_new
Abstract
Shock breakout (SBO), the first expected electromagnetic signature of a supernova (SN), can be an important probe of the progenitors of these explosions. Unfortunately, SBO is difficult to capture with current surveys due to its brief timescale (less than or similar to 1 hr). However, SBO may be lengthened when dense circumstellar material (CSM) is present. Indeed, recent photometric modeling studies of SNe, as well as early spectroscopy, suggest that such dense CSM may be present more often than previously expected. If true, this should also affect the features of SBO. We present an exploration of the impact of such CSM interaction on the SBO width and luminosity using both analytic and numerical modeling, where we parameterize the CSM as a steady-state wind. We then compare this modeling to PS1-13arp, an SN that showed an early UV excess that has been argued to be SBO in dense CSM. We find PS1-13arp is well fit with a wind of mass similar to 0.08 M and radius similar to 1900 R, parameters which are similar to, if not slightly less massive than, what have been inferred for Type II SNe using photometric modeling. This similarity suggests that future SBO observations of SNe II may be easier to obtain than previously appreciated.
View Full Publication open_in_new
Abstract
We present the 30 minutes cadence Kepler/K2 light curve of the Type Ia supernova (SN Ia) SN 2018agk, covering approximately one week before explosion, the full rise phase, and the decline until 40 days after peak. We additionally present ground-based observations in multiple bands within the same time range, including the 1 day cadence DECam observations within the first similar to 5 days after the first light. The Kepler early light curve is fully consistent with a single power-law rise, without evidence of any bump feature. We compare SN 2018agk with a sample of other SNe Ia without early excess flux from the literature. We find that SNe Ia without excess flux have slowly evolving early colors in a narrow range (g - i approximate to -0.20 +/- 0.20 mag) within the first similar to 10 days. On the other hand, among SNe Ia detected with excess, SN 2017cbv and SN 2018oh tend to be bluer, while iPTF16abc's evolution is similar to normal SNe Ia without excess in g - i. We further compare the Kepler light curve of SN 2018agk with companion-interaction models, and rule out the existence of a typical nondegenerate companion undergoing Roche lobe overflow at viewing angles smaller than 45 degrees.
View Full Publication open_in_new
Abstract
We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg(2) for the 90th percentile best localization), covering a total of 51 deg(2) and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r-band decline rate of 0.68 mag day(-1), similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most -17.8 mag (50% confidence). Our data are not constraining for "red" kilonovae and rule out "blue" kilonovae with M > 0.5 M (circle dot) (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17 degrees assuming an initial jet opening angle of similar to 5.degrees 2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.
View Full Publication open_in_new
Abstract
Nova eruptions, thermonuclear explosions on the surfaces of white dwarfs (WDs), are now recognized to be among the most common shock-powered astrophysical transients. We present the early discovery and rapid ultraviolet (UV), optical, and infrared (IR) temporal development of AT 2019qyl, a recent nova in the nearby Sculptor Group galaxy NGC 300. The light curve shows a rapid rise lasting less than or similar to 1 day, reaching a peak absolute magnitude of M ( V ) = -9.2 mag and a very fast decline, fading by 2 mag over 3.5 days. A steep dropoff in the light curves after 71 days and the rapid decline timescale suggest a low-mass ejection from a massive WD with M (WD) greater than or similar to 1.2 M (circle dot). We present an unprecedented view of the early spectroscopic evolution of such an event. Three spectra prior to the peak reveal a complex, multicomponent outflow giving rise to internal collisions and shocks in the ejecta of an He/N-class nova. We identify a coincident IR-variable counterpart in the extensive preeruption coverage of the transient location and infer the presence of a symbiotic progenitor system with an O-rich asymptotic-giant-branch donor star, as well as evidence for an earlier UV-bright outburst in 2014. We suggest that AT 2019qyl is analogous to the subset of Galactic recurrent novae with red-giant companions such as RS Oph and other embedded nova systems like V407 Cyg. Our observations provide new evidence that internal shocks between multiple, distinct outflow components likely contribute to the generation of the shock-powered emission from such systems.
View Full Publication open_in_new
Abstract
We present Hubble Space Telescope imaging of a pre-explosion counterpart to SN 2019yvr obtained 2.6 yr before its explosion as a type Ib supernova (SN Ib). Aligning to a post-explosion Gemini-S/GSAOI image, we demonstrate that there is a single source consistent with being the SN 2019yvr progenitor system, the second SN Ib progenitor candidate after iPTF13bvn. We also analysed pre-explosion Spitzer/Infrared Array Camera (IRAC) imaging, but we do not detect any counterparts at the SN location. SN 2019yvr was highly reddened, and comparing its spectra and photometry to those of other, less extinguished SNe Ib we derive E(B-V) = 0.51(-0.16)(+0.27)mag for SN 2019yvr. Correcting photometry of the pre-explosion source for dust reddening, we determine that this source is consistent with a log(L/L-circle dot) = 5.3 +/- 0.2 and K star. This relatively cool photospheric temperature implies a radius of 320(-50)(+30), much larger than expectations for SN Ib progenitor stars with trace amounts of hydrogen but in agreement with previously identified SN IIb progenitor systems. The photometry of the system is also consistent with binary star models that undergo common envelope evolution, leading to a primary star hydrogen envelope mass that is mostly depleted but still seemingly in conflict with the SN Ib classification of SN 2019yvr. SN 2019yvr had signatures of strong circumstellar interaction in late-time (>150 d) spectra and imaging, and so we consider eruptive mass-loss and common envelope evolution scenarios that explain the SN Ib spectroscopic class, pre-explosion counterpart, and dense circumstellar material. We also hypothesize that the apparent inflation could be caused by a quasi-photosphere formed in an extended, low-density envelope, or circumstellar matter around the primary star.
View Full Publication open_in_new
Abstract
We present observations of SN 2020fqv, a Virgo-cluster type II core-collapse supernova (CCSN) with a high temporal resolution light curve from the Transiting Exoplanet Survey Satellite (TESS) covering the time of explosion; ultraviolet (UV) spectroscopy from the Hubble Space Telescope (HST) starting 3.3 d post-explosion; ground-based spectroscopic observations starting 1.1 d post-explosion; along with extensive photometric observations. Massive stars have complicated mass-loss histories leading up to their death as CCSNe, creating circumstellar medium (CSM) with which the SNe interact. Observations during the first few days post-explosion can provide important information about the mass-loss rate during the late stages of stellar evolution. Model fits to the quasi-bolometric light curve of SN 2020fqv reveal 0.23 M-circle dot of CSM confined within 1450 R-circle dot (10(14) cm) from its progenitor star. Early spectra (<4 d post-explosion), both from HST and ground-based observatories, show emission features from high-ionization metal species from the outer, optically thin part of this CSM. We find that the CSM is consistent with an eruption caused by the injection of similar to 5 x 10(46) erg into the stellar envelope similar to 300 d pre-explosion, potentially from a nuclear burning instability at the onset of oxygen burning. Light-curve fitting, nebular spectroscopy, and pre-explosion HST imaging consistently point to a red supergiant (RSG) progenitor with M-ZAMS approximate to 13.5-15 M-circle dot, typical for SN II progenitor stars. This finding demonstrates that a typical RSG, like the progenitor of SN 2020fqv, has a complicated mass-loss history immediately before core collapse.
View Full Publication open_in_new
Abstract
We present photometric and spectroscopic observations of Supernova 2020oi (SN 2020oi), a nearby (similar to 17 Mpc) type-Ic supernova (SN Ic) within the grand-design spiral M100. We undertake a comprehensive analysis to characterize the evolution of SN 2020oi and constrain its progenitor system. We detect flux in excess of the fireball rise model delta t approximate to 2.5 days from the date of explosion in multiband optical and UV photometry from the Las Cumbres Observatory and the Neil Gehrels Swift Observatory, respectively. The derived SN bolometric luminosity is consistent with an explosion with M (ej) = 0.81 +/- 0.03 M (circle dot), E ( k ) = 0.79 +/- 0.09 x 10(51) erg s(-1), and M (Ni56) = 0.08 +/- 0.02 M (circle dot). Inspection of the event's decline reveals the highest Delta m (15,bol) reported for a stripped-envelope event to date. Modeling of optical spectra near event peak indicates a partially mixed ejecta comparable in composition to the ejecta observed in SN 1994I, while the earliest spectrum shows signatures of a possible interaction with material of a distinct composition surrounding the SN progenitor. Further, Hubble Space Telescope pre-explosion imaging reveals a stellar cluster coincident with the event. From the cluster photometry, we derive the mass and age of the SN progenitor using stellar evolution models implemented in the BPASS library. Our results indicate that SN 2020oi occurred in a binary system from a progenitor of mass M (ZAMS) approximate to 9.5 +/- 1.0 M (circle dot), corresponding to an age of 27 +/- 7 Myr. SN 2020oi is the dimmest SN Ic event to date for which an early-time flux excess has been observed, and the first in which an early excess is unlikely to be associated with shock cooling.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 339
  • Page 340
  • Page 341
  • Page 342
  • Current page 343
  • Page 344
  • Page 345
  • Page 346
  • Page 347
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025