Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Pair distribution function measurement of SiO2 glass up to 120 GPa reveals changes in the first-, second-, and third-neighbor distances associated with an increase in Si coordination number C-Si to >6 above 95 GPa. Packing fractions of Si and O determined from the first- and second-neighbor distances show marked changes accompanied with the structural evolution from C-Si = 6 to >6. Structural constraints in terms of ionic radius ratio of Si and O, and ratio of nonbonded radius to bonded Si-O distance support the structural evolution of SiO2 glass with C-Si > 6 at high pressures.
View Full Publication open_in_new
Abstract
In this paper, we report 591 high-velocity star candidates (HiVelSCs) selected from over 10 million spectra of Data Release 7 (DR7) of the Large Sky Area Multi-object Fiber Spectroscopic Telescope and the second Gaia data release, with three-dimensional velocities in the Galactic rest frame larger than 445 km s(-1). We show that at least 43 HiVelSCs are unbound to the Galaxy with escape probabilities larger than 50%, and this number decreases to eight if the possible parallax zero-point error is corrected. Most of these HiVelSCs are metal-poor and slightly alpha-enhanced inner halo stars. Only 14% of them have [Fe/H] > -1, which may be the metal-rich "in situ" stars in the halo formed in the initial collapse of the Milky Way or metal-rich stars formed in the disk or bulge but kinematically heated. The low ratio of 14% implies that the bulk of the stellar halo was formed from the accretion and tidal disruption of satellite galaxies. In addition, HiVelSCs on retrograde orbits have slightly lower metallicities on average compared with those on prograde orbits; meanwhile, metal-poor HiVelSCs with [Fe/H] < -1 have an even faster mean retrograde velocity compared with metal-rich HiVelSCs. To investigate the origins of HiVelSCs, we perform orbit integrations and divide them into four types, i.e., hypervelocity stars, hyper-runaway stars, runaway stars and fast halo stars. A catalog for these 591 HiVelSCs, including radial velocities, atmospheric parameters, Gaia astrometric parameters, spatial positions, and velocities, etc., is available in the China-VO PaperData Repository at doi:10.12149/101038.
View Full Publication open_in_new
Abstract
Osmoregulation is important for plant growth, development and response to environmental changes. SNF1-related protein kinase 2s (SnRK2s) are quickly activated by osmotic stress and are central components in osmotic stress and abscisic acid (ABA) signaling pathways; however, the upstream components required for SnRK2 activation and early osmotic stress signaling are still unknown. Here, we report a critical role for B2, B3 and B4 subfamilies of Raf-like kinases (RAFs) in early osmotic stress as well as ABA signaling in Arabidopsis thaliana. B2, B3 and B4 RAFs are quickly activated by osmotic stress and are required for phosphorylation and activation of SnRK2s. Analyses of high-order mutants of RAFs reveal critical roles of the RAFs in osmotic stress tolerance and ABA responses as well as in growth and development. Our findings uncover a kinase cascade mediating osmoregulation in higher plants. Rapid activation of SnRK2 kinases is central to plant responses to osmotic stress and abscisic acid. Here the authors show that a group of Raf-like kinases are very quickly activated by osmotic stress, and then phosphorylate and activate SnRK2s.
View Full Publication open_in_new
Abstract
High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO3 crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO3 by reaction of CaO and O-2 at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with laser heating. High-pressure x-ray diffraction data show that CaO3 crystal forms at 35 GPa and persists down to 20 GPa on decompression. Analysis of charge states reveals a formal oxidation state of -2 for ozone anions in CaO3. These findings unravel the ozonide chemistry at high pressure and offer insights for elucidating prominent seismic anomalies and oxygen cycles in Earth's interior. We further predict multiple reactions producing CaO3 by geologically abundant mineral precursors at various depths in Earth's mantle.
View Full Publication open_in_new
Abstract
Rationale: Stroke is a leading causes of human death worldwide. Ischemic damage induces the sterile neuroinflammation, which directly determines the recovery of patients. Lipids, a major component of the brain, significantly altered after stroke. Cholesterol sulfate, a naturally occurring analog of cholesterol, can directly regulate immune cell activation, indicating the possible involvement of cholesterol metabolites in neuroinflammation. Sulfotransferase family 2b member 1 (Sult2b1) is the key enzyme that catalyzes the synthesis of cholesterol sulfate. This study aimed to investigate the function of Sult2b1 and cholesterol sulfate in the neuroinflammation after ischemic stroke.
View Full Publication open_in_new
Abstract
We present the four-year survey results of monthly submillimeter monitoring of eight nearby (<500 pc) star-forming regions by the JCMT Transient Survey. We apply the Lomb-Scargle Periodogram technique to search for and characterize variability on 295 submillimeter peaks brighter than 0.14 Jy beam(-1), including 22 disk sources (Class II), 83 protostars (Class 0/I), and 190 starless sources. We uncover 18 secular variables, all of them protostars. No single-epoch burst or drop events and no inherently stochastic sources are observed. We classify the secular variables by their timescales into three groups: Periodic, Curved, and Linear. For the Curved and Periodic cases, the detectable fractional amplitude, with respect to mean peak brightness, is similar to 4% for sources brighter than similar to 0.5 Jy beam(-1). Limiting our sample to only these bright sources, the observed variable fraction is 37% (16 out of 43). Considering source evolution, we find a similar fraction of bright variables for both Class 0 and Class I. Using an empirically motivated conversion from submillimeter variability to variation in mass accretion rate, six sources (7% of our full sample) are predicted to have years-long accretion events during which the excess mass accreted reaches more than 40% above the total quiescently accreted mass: two previously known eruptive Class I sources, V1647 Ori and EC 53 (V371 Ser), and four Class 0 sources, HOPS 356, HOPS 373, HOPS 383, and West 40. Considering the full protostellar ensemble, the importance of episodic accretion on few years timescale is negligible-only a few percent of the assembled mass. However, given that this accretion is dominated by events on the order of the observing time window, it remains uncertain as to whether the importance of episodic events will continue to rise with decades-long monitoring.
View Full Publication open_in_new
Abstract
We present 12 new transit light curves and 16 new out-of-transit radial-velocity measurements for the XO-3 system. By modeling our newly collected measurements together with archival photometric and Doppler velocimetric data, we confirmed the unusual configuration of the XO-3 system, which contains a massive planet (M-P = 11.92(-0.63)(+0.59) M-J) on a relatively eccentric (e = 0.2853(-0.0026)(+0.0027)) and short-period (3.19152 +/- 0.00145 day) orbit around a massive star (M-* = 1.219(-0.095)(+0.090) M-circle dot). Furthermore, we find no strong evidence for a temporal change of either V sin i(*) (and by extension, the stellar spin vector of XO-3), or the transit profile (and thus orbital angular momentum vector of XO-3b). We conclude that the discrepancy in previous Rossiter-McLaughlin measurements (70.0 degrees +/- 15.0 degrees; Hebrard et al. 2008; 37.3 degrees +/- 3.7 degrees; Winn et al. 2009; 37.3 degrees +/- 3.0 degrees; Hirano et al. 2011) may have stemmed from systematic noise sources.
View Full Publication open_in_new
Abstract
We investigate the possibility that the dwarf galaxies Crater II and Hercules have previously been tidally stripped by the Milky Way. We present Magellan/IMACS spectra of candidate member stars in both objects. We identify 37 members of Crater II, 25 of which have velocity measurements in the literature, and we classify three stars within that subset as possible binaries. We find that including or removing these binary candidates does not change the derived velocity dispersion of Crater II. Excluding the binary candidates, we measure a velocity dispersion of sigma V-los = 2.7(-0.4)(+0.5) km s(-1), corresponding to M/L = 47(-13)(+17) M-circle dot/L-circle dot. We measure a mean metallicity of [Fe/H] = -1.95(-0.05)(+0.06),with a dispersion of sigma([Fe/H]) = 0.18(-0.08)(+0.06). Our velocity dispersion and metallicity measurements agree with previous measurements for Crater II, and confirm that the galaxy resides in a kinematically cold dark-matter halo. We also search for spectroscopic members stripped from Hercules in the possible extratidal stellar overdensities surrounding the dwarf. For both galaxies, we calculate proper motions using Gaia DR2 astrometry, and use their full 6D phase space information to evaluate the probability that their orbits approach sufficiently close to the Milky Way to experience tidal stripping. Given the available kinematic data, we find a probability of similar to 40% that Hercules has suffered tidal stripping. The proper motion of Crater II makes it almost certain to be stripped.
View Full Publication open_in_new
Abstract
We present the first detailed elemental abundances in the ultra-faint Magellanic satellite galaxies Carina II (Car II) and Carina III (Car III). With high-resolution Magellan/MIKE spectroscopy, we determined the abundances of nine stars in Car II, including the first abundances of an RR Lyrae star in an ultra-faint dwarf galaxy (UFD), and two stars in Car III. The chemical abundances demonstrate that both systems are clearly galaxies and not globular clusters. The stars in these galaxies mostly display abundance trends matching those of other similarly faint dwarf galaxies: enhanced but declining [alpha/Fe] ratios, iron-peak elements matching the stellar halo, and unusually low neutron-capture element abundances. One star displays a low outlying [Sc/Fe] = -1.0. We detect a large Ba scatter in Car II, likely due to inhomogeneous enrichment by low-mass asymptotic giant branch star winds. The most striking abundance trend is for [Mg/Ca] in Car II, which decreases from +0.4 to -0.4 and indicates clear variation in the initial progenitor masses of enriching core-collapse supernovae. So far, the only UFDs displaying a similar [Mg/Ca] trend are likely satellites of the Large Magellanic Cloud. We find two stars with [Fe/H] <= -3.5 whose abundances likely trace the first generation of metal-free Population III stars and are well fit by Population III core-collapse supernova yields. An appendix describes our new abundance uncertainty analysis that propagates line-by-line stellar parameter uncertainties.
View Full Publication open_in_new
Abstract
In this detailed geochemical, petrological, and microstructural study of felsite clast materials contained in Apollo breccia samples 12013, 14321, and 15405, little evidence was found for relatively enriched reservoirs of endogenic lunar volatiles. NanoSIMS measurements have revealed very low volatile abundances (<= 2-18 ppm hydrogen) in nominally anhydrous minerals (NAMS) plagioclase, potassic alkali feldspar, and SiO2 that make up a majority of these felsic lithologies. Yet these mineral assemblages and clast geochemistries on Earth would normally yield relatively high volatiles contents in their NAMS (similar to 20 to >= 80 ppm hydrogen). This difference is particularly notable in felsite 14321,1062 that exhibits extremely low volatile abundances (<= 2 ppm hydrogen) and a relatively low amount of microstructural evidence for shock metamorphism given that it is a clast of the most evolved (similar to 74 wt.% SiO2) rock-type returned from the Moon. If taken at face value, 'wet' felsic magmas (similar to 1 .2-1.7 wt.% water) are implied by the relatively high hydrogen contents of feldspar in felsite clasts in Apollo samples 12013 and 15405, but these results are likely misleading. These felsic clasts have microstructural features indicative of significantly higher shock stress than 14321,1062. These crustal lithologies likely obtained no more water from the lunar interior than the magma body producing 14321,1062. Rather, we suggest hydrogen was enriched in samples 12013 and 15405 by impact induced exchange, and/or partial assimilation of volatiles added to the surface of the Moon by a hydrated impactor (asteroid or comet) or the solar wind. Thus, the best estimate for magmatic water contents of felsic lunar magmas comes from 14321,1062 that leads to a calculated magmatic water content of <= 0.2 wt.%. This dry felsic magma has a slightly greater, but comparable water content to the ancient mafic magmas implied by the other lithologies that we have studied. Based on this and expanding evidence for a significantly dry ancient or early degassed Moon it is likely that some recent estimates (100's ppm) of the water abundances in the lunar parental magma ocean have been overestimated. Published by Elsevier Ltd.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 336
  • Page 337
  • Page 338
  • Page 339
  • Current page 340
  • Page 341
  • Page 342
  • Page 343
  • Page 344
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026