Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Featured Staff Member

    Tim Strobel

    Dr. Timothy Strobel

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Timothy Strobel
    Staff Scientist

    Timothy Strobel's research centers around the synthesis and characterization of novel materials for energy and advanced applications. New materials are synthesized using unique pressure-temperature conditions and through innovative processing pathways. 

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Mars
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    galaxy simulation
    Breaking News
    September 17, 2025

    $4M John Templeton Foundation grant funds interdisciplinary approach to unraveling cosmic mysteries

    Joseph Gall at the microscope
    Breaking News
    September 16, 2025

    Joseph Gall posthumously receives Golden Goose Award

    Mars rover things about life
    Breaking News
    August 26, 2025

    Teaching A.I. to Detect Life: Carnegie Scientist Co-Leads NASA-Funded Effort

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The Isua supracrustal belt (ISB) and the Nuvvuagittuq greenstone belt (NGB) are among the oldest suites of mafic volcanic rocks preserved on Earth and are the best candidates for representing its early crust. Despite the possible 500 Ma age difference between the belts, these mantle -derived rocks show compositional similarities, with features resembling rocks formed in subduction initiation environments. With the addition of new Nd-142 data for the Garbenschiefer unit of the ISB reported here, high precision Nd-142 data are now available for all the mafic lithologies from both belts. Mantle -derived rocks from both the ISB and NGB belts exhibit a range of Nd-142/Nd-144 ratios. The datasets for the two belts, however, are significantly different, suggesting a different origin for their Nd-142 anomalies. Nearly all ISB samples have excesses in Nd-142, including the newly analyzed Garbenschiefer boninitic amphibolites (mean of +12 ppm). Excesses in Nd-142/Nd-144 compared to the Nd standard for all the ISB rocks range between +8 and +20 ppm, with a near Gaussian distribution around +12 ppm. This distribution could simply reflect the analytical error ( 5 ppm) around a single Nd-142/Nd-144 ratio indicating that the samples formed after the extinction of Sm-146 from a source with a nearly uniform Nd-142/Nd-144 ratio. In contrast, the NGB shows a range of Nd-142/Nd-144 ratios from +8 to 18 ppm relative to the modern Nd standard and displays a flat distribution of Nd-142/Nd-144 ratios, The ISB samples show no significant correlation between their Nd-142/144Nd and Sm/Nd ratios, consistent with their formation in the Eoarchean via melting of a Hadean depleted mantle. In contrast, all NGB samples display a Nd-142/144Nd vs. Sm/Nd correlation, consistent with their crystallization in the Hadean. The mantle sources for both the ISB and NGB mantle derived rocks have a similar Nd-142/144Nd ratio at the possible age of formation of the NGB (similar to 43 Ga) suggesting the derivation of ISB and NGB rocks from a common early-formed depleted mantle source formed between 4.47 and 4.42 Ga with a Sm-147/Nd-144 ratio similar to 0.218. This mantle appears to have been an important source component involved in the formation of the primitive crust during most of the Hadean and Eoarchean eons. (C )2016 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
Several first order features of Earth owe their origin to processes occurring before, during, and within a few hundred million years of Earth formation. Arguably the most significant expression of these early events is the bulk composition of Earth. Earth's depletion in some volatile elements likely was inherited from the materials from which it formed. This is most easily attributed to Earth's accumulation from planetesimals formed in the inner Solar System where the temperatures were hot enough, for long enough, to keep many volatile elements in the gas phase until after the solids had accumulated into at least planetesimal-sized objects. Improved understanding of the processes of planetary accretion makes it increasingly clear that the main fraction of Earth's mass was accumulated through violent collisions with large planetesimals, not by gentle accumulation of primitive bodies. The accreted planetesimals likely had already experienced global differentiation to separate core from mantle and crust, and suffered additional volatile loss by gravitational escape of any atmosphere formed through this early differentiation on the small planetesimal. The short-lived Hf-182-W-182 system indicates that the metal-silicate separation associated with core formation began on planetesimals within a million years or less and on Earth within tens of millions of years of the start of Solar System formation. Metal-silicate separation left Earth's mantle deficient in siderophile elements relative to their abundances in bulk chondrites. Mantle abundances of moderately siderophile elements suggest high-pressure and temperature equilibrium between metal and silicate, consistent with metal-silicate segregation occurring during largely or entirely molten stages of early Earth history. By contrast, the mantle abundances of highly siderophile elements are most easily reconciled with addition of approximately half a percent of Earth's mass of material with chondritic composition after chemical exchange between mantle and core had stopped. Evidence for early differentiation of the silicate Earth, as would be expected for a terrestrial magma ocean, is remarkably subdued, but is now being extracted from information provided by short-lived radioactive systems such as I-129-Xe-129, Sm-146-Nd-142, and Hf-182-W-182. For example, Xe-129 and Nd-142 heterogeneities in the mantle point to a major terrestrial differentiation event occurring between circa 4.4 and 4.45 Ga, which is most easily attributed to the time of the Moon-forming giant impact. What little evidence remains for the nature of Earth's crust that formed immediately after the resulting magma ocean suggests the presence of a primitive mafic crust that did not become reworked into substantial felsic continental crust until 3.8 to 4.0 Ga.
View Full Publication open_in_new
Abstract
The style of tectonics on the Hadean and Archean Earth, particularly whether plate tectonics was in operation or not, is debated. One important, albeit indirect, constraint on early Earth tectonics comes from observations of early-formed geochemical heterogeneities: Nd-142 and W-182 anomalies recorded in Hadean to Phanerozoic rocks from different localities indicate that chemically heterogeneous reservoirs, formed during the first similar to 500 Myrs of Earth's history, survived their remixing into the mantle for over 1 Gyrs. Such a long mixing time is difficult to explain because hotter mantle temperatures, expected for the early Earth, act to lower mantle viscosity and increase convective vigor. Previous studies found that mobile lid convection typically erases heterogeneity within similar to 100 Myrs under such conditions, leading to the hypothesis that stagnant lid convection on the early Earth was responsible for the observed long mixing times. However, using two-dimensional Cartesian convection models that include grainsize evolution, we find that mobile lid convection can preserve heterogeneity at high mantle temperature conditions for much longer than previously thought, because higher mantle temperatures lead to larger grainsizes in the lithosphere. These larger grainsizes result in stronger plate boundaries that act to slow down surface and interior convective motions, in competition with the direct effect temperature has on mantle viscosity. Our models indicate that mobile lid convection can preserve heterogeneity for approximate to 0.4-1 Gyrs at early Earth mantle temperatures when the initial heterogeneity has the same viscosity as the background mantle, and approximate to 1-4 Gyrs when the heterogeneity is ten times more viscous than the background mantle. Thus, stagnant lid convection is not required to explain long-term survival of early formed geochemical heterogeneities, though these heterogeneities having an elevated viscosity compared to the surrounding mantle may be essential for their preservation. (C) 2017 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. It is widely believed that these planets formed near the water-ice line of the protoplanetary disk, and subsequently migrated into much smaller orbits. Most of the proposed migration mechanisms can be classified either as disk-driven migration, or as excitation of a very high eccentricity followed by tidal circularization. In the latter scenario, the giant planet that is destined to become a hot Jupiter spends billions of years on a highly eccentric orbit, with apastron near the waterice line. Eventually, tidal dissipation at periastron shrinks and circularizes the orbit. If this is correct, then it should be especially rare for hot Jupiters to be accompanied by another giant planet interior to the water-ice line. Using the current sample of giant planets discovered with the Doppler technique, we find that hot Jupiters with P-orb < 10 days are no more or less likely to have exterior Jupiter-mass companions than longer-period giant planets with P-orb >= 10 days. This result holds for exterior companions both inside and outside of the approximate location of the water-ice line. These results are difficult to reconcile with the high-eccentricity migration scenario for hot Jupiter formation.
View Full Publication open_in_new
Abstract
Stars with unusual elemental abundances offer clues about rare astrophysical events or nucleosynthetic pathways. Stars with significantly depleted magnesium and enhanced potassium ([Mg/Fe] < -0.5; [K/Fe] > 1) have to date only been found in the massive globular cluster NGC 2419 and, to a lesser extent, NGC 2808. The origin of this abundance signature remains unknown, as does the reason for its apparent exclusivity to these two globular clusters. Here we present 112 field stars, identified from 454 180 LAMOST giants, that show significantly enhanced [K/Fe] and possibly depleted [Mg/Fe] abundance ratios. Our sample spans a wide range of metallicities (-1.5 < [Fe/H] < 0.3), yet none show abundance ratios of [K/Fe] or [Mg/Fe] that are as extreme as those observed in NGC 2419. If confirmed, the identified sample of stars represents evidence that the nucleosynthetic process producing the anomalous abundances ratios of [K/Fe] and [Mg/Fe] probably occurs at a wide range of metallicities. This would suggest that pollution scenarios that are limited to early epochs (such as Population III supernovae) are an unlikely explanation, although they cannot be ruled out entirely. This sample is expected to help guide modelling attempts to explain the origin of the Mg-K abundance signature.
View Full Publication open_in_new
Abstract
Here we present the discovery of 895 s-process-rich candidates from 454 180 giant stars observed by the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) using a data-driven approach. This sample constitutes the largest number of s-process enhanced stars ever discovered. Our sample includes 187 s-process-rich candidates that are enhanced in both barium and strontium, 49 stars with significant barium enhancement only and 659 stars that show only a strontium enhancement. Most of the stars in our sample are in the range of effective temperature and log g typical of red giant branch (RGB) populations, which is consistent with our observational selection bias towards finding RGB stars. We estimate that only a small fraction (similar to 0.5 per cent) of binary configurations are favourable for s-process enriched stars. The majority of our s-process-rich candidates (95 per cent) show strong carbon enhancements, whereas only five candidates ( <3 per cent) show evidence of sodium enhancement. Our kinematic analysis reveals that 97 per cent of our sample are disc stars, with the other 3 per cent showing velocities consistent with the Galactic halo, The scaleheight of the disc is estimated to be z(h), = 0.634 +/- 0.063 kpc, comparable with values in the literature, A comparison with yields from asymptotic giant branch (AGB) models suggests that the main neutron source responsible for the Ba and Sr enhancements is the C-13(alpha,n)O-16 reaction, We conclude that s-process-rich candidates may have received their overabundances via mass transfer from a previous AGB companion with an initial mass in the range 1-3 M-circle dot.
View Full Publication open_in_new
Abstract
The metallicity dependence of the wide-binary fraction (WBF) IN stellar populations plays a critical role in resolving the open question of wide-binary formation. In this paper, we investigate the metallicity ([Fe/H]) and age dependence of the WBF (binary separations between 10(3) and 10(4) au) for field F and G dwarfs within 500 pc by combining their metallicity and radial velocity measurements from LAMOST Data Release 5 (DR5) with the astrometric information from Gaia DR2. We show that the WBF strongly depends on the metallicity: as metallicity increases, the WBF first increases, peaks at [Fe/H] similar or equal to 0, and then decreases at the high-metallicity end. The WBF at [Fe/H] = 0 is about two times larger than that at [Fe/H] = -1 and +0.5. This metallicity dependence is dominated by the thin-disc stars. Using stellar kinematics as a proxy of stellar age, we show that younger stars have a higher WBF at fixed metallicity close to solar. We propose that multiple formation channels are responsible for the metallicity and age dependence. In particular, the positive metallicity correlation at [Fe/H] < 0 and the age dependence may be due to the denser formation environments and higher mass clusters at earlier times. The negative metallicity correlation at [Fe/H] > 0 can be inherited from the similar metallicity dependence of close binaries, and radial migration may play a role in enhancing the WBF around the solar metallicity.
View Full Publication open_in_new
Abstract
The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. It is widely believed that these planets formed near the water-ice line of the protoplanetary disk, and subsequently migrated into much smaller orbits. Most of the proposed migration mechanisms can be classified either as disk-driven migration, or as excitation of a very high eccentricity followed by tidal circularization. In the latter scenario, the giant planet that is destined to become a hot Jupiter spends billions of years on a highly eccentric orbit, with apastron near the waterice line. Eventually, tidal dissipation at periastron shrinks and circularizes the orbit. If this is correct, then it should be especially rare for hot Jupiters to be accompanied by another giant planet interior to the water-ice line. Using the current sample of giant planets discovered with the Doppler technique, we find that hot Jupiters with P-orb < 10 days are no more or less likely to have exterior Jupiter-mass companions than longer-period giant planets with P-orb >= 10 days. This result holds for exterior companions both inside and outside of the approximate location of the water-ice line. These results are difficult to reconcile with the high-eccentricity migration scenario for hot Jupiter formation.
View Full Publication open_in_new
Abstract
Stars with unusual elemental abundances offer clues about rare astrophysical events or nucleosynthetic pathways. Stars with significantly depleted magnesium and enhanced potassium ([Mg/Fe] < -0.5; [K/Fe] > 1) have to date only been found in the massive globular cluster NGC 2419 and, to a lesser extent, NGC 2808. The origin of this abundance signature remains unknown, as does the reason for its apparent exclusivity to these two globular clusters. Here we present 112 field stars, identified from 454 180 LAMOST giants, that show significantly enhanced [K/Fe] and possibly depleted [Mg/Fe] abundance ratios. Our sample spans a wide range of metallicities (-1.5 < [Fe/H] < 0.3), yet none show abundance ratios of [K/Fe] or [Mg/Fe] that are as extreme as those observed in NGC 2419. If confirmed, the identified sample of stars represents evidence that the nucleosynthetic process producing the anomalous abundances ratios of [K/Fe] and [Mg/Fe] probably occurs at a wide range of metallicities. This would suggest that pollution scenarios that are limited to early epochs (such as Population III supernovae) are an unlikely explanation, although they cannot be ruled out entirely. This sample is expected to help guide modelling attempts to explain the origin of the Mg-K abundance signature.
View Full Publication open_in_new
Abstract
Here we present the discovery of 895 s-process-rich candidates from 454 180 giant stars observed by the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) using a data-driven approach. This sample constitutes the largest number of s-process enhanced stars ever discovered. Our sample includes 187 s-process-rich candidates that are enhanced in both barium and strontium, 49 stars with significant barium enhancement only and 659 stars that show only a strontium enhancement. Most of the stars in our sample are in the range of effective temperature and log g typical of red giant branch (RGB) populations, which is consistent with our observational selection bias towards finding RGB stars. We estimate that only a small fraction (similar to 0.5 per cent) of binary configurations are favourable for s-process enriched stars. The majority of our s-process-rich candidates (95 per cent) show strong carbon enhancements, whereas only five candidates ( <3 per cent) show evidence of sodium enhancement. Our kinematic analysis reveals that 97 per cent of our sample are disc stars, with the other 3 per cent showing velocities consistent with the Galactic halo, The scaleheight of the disc is estimated to be z(h), = 0.634 +/- 0.063 kpc, comparable with values in the literature, A comparison with yields from asymptotic giant branch (AGB) models suggests that the main neutron source responsible for the Ba and Sr enhancements is the C-13(alpha,n)O-16 reaction, We conclude that s-process-rich candidates may have received their overabundances via mass transfer from a previous AGB companion with an initial mass in the range 1-3 M-circle dot.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 239
  • Page 240
  • Page 241
  • Page 242
  • Current page 243
  • Page 244
  • Page 245
  • Page 246
  • Page 247
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025