Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Featured Staff Member

    Dr. Margaret McFall-Ngai

    Senior Staff Scientist

    Learn More
    Observatory Staff
    Dr. Margaret McFall-Ngai
    Senior Staff Scientist

    Microbiome specialist Margaret McFall-Ngai’s research focuses on the beneficial relationships between animals and bacteria, including the establishment and maintenance of symbiosis, the evolution of these interactions, and their impact on the animal’s health.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    2005_DTM_NASAEnceladusTigerStripes
    Public Program

    Neighborhood Lecture Series Program With Dr. Caleb Scharf

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

    Open House Background
    Public Program

    Earth & Planets Laboratory Open House

    Earth & Planets Laboratory

    October 25

    1:00pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Stars in space
    Breaking News
    September 30, 2025

    Vote for Carnegie Science’s 2025 Holiday Card

    Artist's conception of moon-forming environment. Credit: NASA, ESA, CSA, STScI, Gabriele Cugno (University of Zürich, NCCR PlanetS), Sierra Grant (Carnegie Institution for Science), Joseph Olmsted (STScI), Leah Hustak (STScI)
    Breaking News
    September 29, 2025

    Astronomers get first-ever peek into a gas giant’s moon-forming environment

    Breaking News
    September 24, 2025

    Steven B. Shirey awarded AGU’s Hess Medal

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Understanding evolutionary genomic and population processes within a species range is key to anticipating the extinction of plant species before it is too late. However, most models of biodiversity risk under global change do not account for the genetic variation and local adaptation of different populations. Population diversity is critical to understanding extinction because different populations may be more or less susceptible to global change and, if lost, would reduce the total diversity within a species. Two new modeling frameworks advance our understanding of extinction from a population and evolutionary angle: Rapid climate change-driven disruptions in population adaptation are predicted from associations between genomes and local climates. Furthermore, losses of population diversity from global land-use transformations are estimated by scaling relationships of species' genomic diversity with habitat area. Overall, these global eco-evolutionary methods advance the predictability - and possibly the preventability - of the ongoing extinction of plant species.
View Full Publication open_in_new
Abstract
Brillouin spectroscopy at room temperature and pressures up to 40 GPa documents nearly identical elasticity and refractive index of amorphous CaSiO3 created by two different methods: temperature-quenching the melt at ambient pressure and pressure-amorphizing crystalline wollastonite at room temperature. We find reproducible hysteresis of 0 to 8% on pressure cycling that is small relative to the 30 to 60% changes in shear and longitudinal wave velocities over this pressure range. Together with observed changes in refractive index and previous results from Raman spectroscopy, these measurements reveal a continuous and reversible change in atomic packing induced by pressure. Unlike many other silicate glasses, amorphous CaSiO3 exhibits highly reproducible properties, behaving smoothly and reversibly under pressure cycling and possessing similar structure and elasticity regardless of synthesis paths for the starting material, which suggests that the amorphous solid may mimic the liquid over the pressure range investigated.
View Full Publication open_in_new
Abstract
The recently discovered SrxBi2Se3 superconductor provides an alternative and ideal material base for investigating possible topological superconductivity. Here, we report that in Sr0.065Bi2Se3, the ambient superconducting phase is gradually depressed upon the application of external pressure. At high pressure, a second superconducting phase emerges at above 6 GPa, with a maximum T-c value of similar to 8.3 K. The joint investigations of the high-pressure synchrotron x-ray diffraction and electrical transport properties reveal that the reemergence of superconductivity in Sr0.065Bi2Se3 is closely related to the structural phase transition from an ambient rhombohedral phase to a high-pressure monoclinic phase around 6 GPa, and further to another high-pressure tetragonal phase above 25 GPa.
View Full Publication open_in_new
Abstract
As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature T-c increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum T-c of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments.
View Full Publication open_in_new
Abstract
WTe2 is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe2. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T' with space group of P2(1)/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cell volume by similar to 20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
View Full Publication open_in_new
Abstract
Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html
View Full Publication open_in_new
Abstract
We report a new pressure-induced phase in TaAs with different Weyl fermions than the ambient structure with the aid of theoretical calculations, experimental transport and synchrotron structure investigations up to 53 GPa. We show that TaAs transforms from an ambient I4(1) md phase (t-TaAs) to a high-pressure hexagonal P-6m2 (h-TaAs) phase at 14 GPa, along with changes of the electronic state from containing 24 Weyl nodes distributed at two energy levels to possessing 12 Weyl nodes at an isoenergy level, which substantially reduces the interference between the surface and bulk states. The new pressure-induced phase can be reserved upon releasing pressure to ambient condition, which allows one to study the exotic behavior of a single set of Weyl fermions, such as the interplay between surface states and other properties.
View Full Publication open_in_new
Abstract
Spin-crossover (SCO) is generally regarded as a spectacular molecular magnetism in 3d(4)-3d(7) metal complexes and holds great promise for various applications such as memory, displays, and sensors. In particular, SCO materials can be multifunctional when a classical light- or temperature induced SCO occurs along with other cooperative structural and/or electrical transport alterations. However, such a cooperative SCO has rarely been observed in condensed matter under hydrostatic pressure (an alternative external stimulus to light or temperature), probably due to the lack of synergy between metal neighbors under compression. Here, we report the observation of a pressure-driven, cooperative SCO in the two-dimensional (2D) honeycomb antiferromagnets MnPS3 and MnPSe3 at room temperature. Applying pressure to this confined 2D system leads to a dramatic magnetic moment collapse of Mn2+ (d(5)) from S = 5/2 to S = 1/2. Significantly, a number of collective phenomena were observed along with the SCO, including a large lattice collapse (similar to 20% in volume), the formation of metallic bonding, and a semiconductor-to-metal transition. Experimental evidence shows that all of these events occur in the honeycomb lattice, indicating a strongly cooperative mechanism that facilitates the occurrence of the abrupt pressure-driven SCO. We believe that the observation of this cooperative pressure-driven SCO in a 2D system can provide a rare model for theoretical investigations and lead to the discovery of more pressure-responsive multifunctional materials.
View Full Publication open_in_new
Abstract
To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost decrease on average in the long-term global wind electricity market. Today's technology advancement could bring us the benefit of increasing electricity production in the future 40-50 years, and decreasing electricity cost in the future 90-100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment. (C) 2016 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
We present in situ high-pressure synchrotron X-ray diffraction (XRD) and Raman spectroscopy study, and electrical transport measurement of single crystal WSe2 in diamond anvil cells with pressures up to 54.0-62.8 GPa. The XRD and Raman results show that the phase undergoes a pressure-induced iso-structural transition via layer sliding, beginning at 28.5 GPa and not being completed up to around 60 GPa. The Raman data also reveals a dominant role of the in-plane strain over the out-of plane compression in helping achieve the transition. Consistently, the electrical transport experiments down to 1.8 K reveals a pressure-induced metallization for WSe2 through a broad pressure range of 28.2-61.7 GPa, where a mixed semiconducting and metallic feature is observed due to the coexisting low-and high-pressure structures.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 236
  • Page 237
  • Page 238
  • Page 239
  • Current page 240
  • Page 241
  • Page 242
  • Page 243
  • Page 244
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025