Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

March 03, 2010

Old Star is “Missing Link” in Galactic Evolution

August 29, 2011

New discovery sheds light on the ecosystem of young galaxies

Abstract
Vertebrates transport hydrophobic triglycerides through the circulatory system by packaging them within amphipathic particles called Triglyceride-Rich Lipoproteins. Yet, it remains largely unknown how triglycerides are loaded onto these particles. Mutations in Phospholipase A2 group 12B (PLA2G12B) are known to disrupt lipoprotein homeostasis, but its mechanistic role in this process remains unclear. Here we report that PLA2G12B channels lipids within the lumen of the endoplasmic reticulum into nascent lipoproteins. This activity promotes efficient lipid secretion while preventing excess accumulation of intracellular lipids. We characterize the functional domains, subcellular localization, and interacting partners of PLA2G12B, demonstrating that PLA2G12B is calcium-dependent and tightly associated with the membrane of the endoplasmic reticulum. We also detect profound resistance to atherosclerosis in PLA2G12B mutant mice, suggesting an evolutionary tradeoff between triglyceride transport and cardiovascular disease risk. Here we identify PLA2G12B as a key driver of triglyceride incorporation into vertebrate lipoproteins.
open_in_new
Abstract
The animal foregut is the first tissue to encounter ingested food, bacteria, and viruses. We characterized the adult Drosophila foregut using transcriptomics to better understand how it triages consumed items for digestion or immune response and manages resources. Cell types were assigned and validated using GFP-tagged and Gal4 reporter lines. Foregut-associated neuroendocrine cells play a major integrative role by coordinating gut activity with nutrition, the microbiome, and circadian cycles; some express clock genes. Multiple epithelial cell types comprise the proventriculus, the central foregut organ that secretes the peritrophic matrix (PM) lining the gut. Analyzing cell types synthesizing individual PM layers revealed abundant mucin production close to enterocytes, similar to the mammalian intestinal mucosa. The esophagus and salivary gland express secreted proteins likely to line the esophageal surface, some of which may generate a foregut commensal niche housing specific gut microbiome species. Overall, our results imply that the foregut coordinates dietary sensing, hormonal regulation, and immunity in a manner that has been conserved during animal evolution.
open_in_new
Abstract
We present a comprehensive overview of a volume-complete sample of white dwarfs located within 40 pc of the Sun, a significant proportion of which were detected in Gaia Data Release 3 (DR3). Our DR3 sample contains 1076 spectroscopically confirmed white dwarfs, with just five candidates within the volume remaining unconfirmed (> 99 per cent spectroscopic completeness). Additionally, 28 white dwarfs were not in our initial selection from Gaia DR3, most of which are in unresolved binaries. We use Gaia DR3 photometry and astrometry to determine a uniform set of white dwarf parameters, including mass, effective temperature, and cooling age. We assess the demographics of the 40 pc sample, specifically magnetic fields, binarity, space density, and mass distributions.
open_in_new
Abstract
A solid solution of the mineral feiite (Fe3TiO5) was recently discovered in a shock-induced melt pocket of the Shergotty martian shergottite. It is particularly interesting for its potential as an indicator of pressure-temperature (P-T) and oxygen fugacity in martian crustal and mantle material. To date, complete crystallographic analysis of feiite has not been conducted, as the mineral was previously analyzed by electron backscatter diffraction on micrometer-size grains (Ma et al. 2021). Here we report a convergent crystal-structure model for feiite based on synchrotron single-crystal X-ray diffraction data collected on three grains of feiite synthesized at 12 GPa and 1200 degrees C. Feiite adopts the CaFe3O5 structure type (Cmcm, Z = 4), which is composed of two octahedral M1 and M2 sites and one trigonal prismatic M3 site (M = metal) in a ratio of 1:2:1. The three feiite grains with composition Ti0.46-0.60Fe3.54-3.40O5 were best modeled by substituting Ti4+ into only the octahedral M2 site, accounting for 30% of this site. Comparisons of the measured average bond lengths in the coordination polyhedra with the optimized Ti4+-O, Fe2+-O, and Fe3+-O bond lengths suggest that ferrous iron occupies the trigonal M3 site, while iron is mixed valence in the octahedral M1 and M2 sites. The Ti4+ and Fe3+ content constrained by our crystal-chemical analyses suggests that at least similar to 30% of the available iron must be ferric (i.e., Fe3+/Fe-total = 0.3) for the sample synthesized at 12 GPa and 1200 degrees C and higher P-T conditions may be needed to form the end-member feiite (Fe32+TiO5)
open_in_new
Abstract
Molecular assembly indices, which measure the number of unique sequential steps theoretically required to construct a three-dimensional molecule from its constituent atomic bonds, have been proposed as potential biosignatures. A central hypothesis of assembly theory is that any molecule with an assembly index >= 15 found in significant local concentrations represents an unambiguous sign of life. We show that abiotic molecule-like heteropolyanions, which assemble in aqueous solution as precursors to some mineral crystals, range in molecular assembly indices from 2 for H2CO3 or Si(OH)4 groups to as large as 21 for the most complex known molecule-like subunits in the rare minerals ewingite and ilmajokite. Therefore, values of molecular assembly indices >= 15 do not represent unambiguous biosignatures.
open_in_new
Abstract
Compression of small molecules can induce solid-state reactions that are difficult or impossible under conventional, solution-phase conditions. Of particular interest is the topochemical-like reaction of arenes to produce polymeric nanomaterials. However, high reaction onset pressures and poor selectivity remain significant challenges. Herein, the incorporation of electron-withdrawing and -donating groups into pi-stacked arenes is proposed as a strategy to reduce reaction barriers to cycloaddition and onset pressures. Nevertheless, competing side-chain reactions between functional groups represent alternative viable pathways. For the case of a diaminobenzene:tetracyanobenzene cocrystal, amidine formation between amine and cyano groups occurs prior to cycloaddition with an onset pressure near 9 GPa, as determined using vibrational spectroscopy, X-ray diffraction, and first-principles calculations. This work demonstrates that reduced-barrier cycloaddition reactions are theoretically possible via strategic functionalization; however, the incorporation of pendant groups may enable alternative reaction pathways. Controlled reactions between pendant groups represent an additional strategy for producing unique polymeric nanomaterials.
open_in_new
Abstract
The Dominion Range (DOM) and Miller Range (MIL) dense collection areas (DCAs) have yielded more than 20 and 200 CO3 chondrites (carbonaceous chondrites of the Ornans chemical group), respectively, over multiple field seasons. Several samples have exhibited primitive characteristics and have been the focus of interest. With so many CO3s recovered from this area, a natural question is if there are multiple pairing groups (where pairing refers to two or more meteorites that are part of a single fall) and if there is additional primitive material that would interest the meteorite community. This comprehensive study looks at all samples using several approaches: field and macroscopic observations; magnetic susceptibility; Cr in ferroan olivine; bulk elemental and isotopic analysis of H, C, N, and noble gas analyses to determine cosmic ray exposure (CRE) ages. Magnetic susceptibilities (measured as log chi) for all samples correlate with their type II (i.e., FeO-rich) olivine Cr contents, with the most primitive CO3s (3.00) have log chi values near 5, while the higher grade CO3s have log chi values as low as 4.17. Altogether, there appear to be two distinct CO3 pairing groups and five other unpaired CO3s recovered at the Dominion Range: (a) the main DOM 08004 pairing group (16 specimens with a CRE age of 10-16 Ma), (b) the DOM 08006 group (2 specimens incl. DOM 10847 with a CRE age of 25 Ma), (c) DOM 14359 with a CRE age of 6 Ma, (d) DOM 18070 with a CRE age of 8 Ma (these two samples have similar ages but distinct trapped Ne-20 contents), (e) DOM 10900 with a CRE age of 5.5 Ma, (f) DOM 18286 (with a CRE age of similar to 59 Ma), and (g) DOM 19034 (with a CRE age of similar to 43 Ma). There are three distinct age groupings of 3.00-3.05 COs, highlighting the diverse pristine CO3 materials present in the DOM area. There is one large MIL pairing group (MIL 07099; n = 199; 9-14 Ma CRE age where measured) and one smaller pairing group with distinctly lower Cr2O3 in type II olivines (8 samples of unknown CRE age), and five unpaired or unique CO3s. Notably, the large DOM and MIL pairing groups have 9-16 Ma exposure ages that could have been delivered in a single large fall event spanning similar to 200 km, two separate falls that were ejection paired, or two separate falls from two separate ejections. Finally, we recommend reclassifying several CO3 to CM2 based on new data and that from previous studies.
open_in_new
Abstract
The recent discovery of "ultrahot" (P < 1 day) Neptunes has come as a surprise: some of these planets have managed to retain gaseous envelopes despite being close enough to their host stars to trigger strong photoevaporation and/or Roche lobe overflow. Here, we investigate atmospheric escape in LTT 9779b, an ultrahot Neptune with a volatile-rich envelope. We observed two transits of this planet using the newly commissioned WINERED spectrograph (R similar to 68,000) on the 6.5 m Clay/Magellan II Telescope, aiming to detect an extended upper atmosphere in the He 10830 angstrom triplet. We found no detectable planetary absorption: in a 0.75 angstrom passband centered on the triplet, we set a 2 sigma upper limit of 0.12% (delta R-p/H < 14) and a 3 sigma upper limit of 0.20% (delta R-p/H < 22). Using a H/He isothermal Parker wind model, we found corresponding 95% and 99.7% upper limits on the planetary mass-loss rate of M<10(10.03) g s(-1) and M<10(11.11) g s(-1), respectively, smaller than predicted by outflow models even considering the weak stellar X-ray and ultraviolet emission. The low evaporation rate is plausibly explained by a metal-rich envelope, which would decrease the atmospheric scale height and increase the cooling rate of the outflow. This hypothesis is imminently testable: if metals commonly weaken planetary outflows, then we expect that JWST will find high atmospheric metallicities for small planets that have evaded detection in He 10830 angstrom.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 132
  • Page 133
  • Page 134
  • Page 135
  • Current page 136
  • Page 137
  • Page 138
  • Page 139
  • Page 140
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025