Shedding light on spatial structure and dynamics in phototrophic biofilms
2023
Current Opinion in Systems Biology
DOI
10.1016/j.coisb.2023.100480
Microbial phototrophic communities dominated early Earth and thrive to this day, particularly in extreme environments. We focus on the impact of diel oscillations on phototrophic biofilms, especially in hot springs, where oxygenic phototrophs are keystone species that use light energy to fix carbon and often nitrogen. They exhibit photo-motility and stratification, and alter the physicochemical environment by driving O2, CO2, and pH oscillations. Omics analyses reveal extensive genomic and functional diversity in biofilms, but linking this to a predictive understanding of their structure and dynamics remains challenging. This can be addressed by better spatiotemporal resolution of microbial interactions, improved tools for building and manipulating synthetic communities, and integration of empirical and theoretical approaches.