Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Steele points to a sample of Martian meteorite
    Breaking News
    January 26, 2026

    The rocks that remember what Earth forgot

    Artist’s conception of a disk of material surrounding a young star. Credit: Robin Dienel/Carnegie Science
    Breaking News
    January 22, 2026

    From Planets to Life - Humanity's Oldest Question

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The single-minded (sim) gene encodes a transcriptional regulator that functions as a key determinant of central nervous system (CNS) midline development in Drosophila, We report here the identification of two murine homologs of sim, Sim1 and Sim2 whose products show a high degree of sequence conservation with Drosophila SIM in their amino-terminal halves, with each containing a basic helix-loop-helix domain as well as a PAS domain, Sim1 maps to the proximal region of mouse chromosome 10, whereas Sim2 maps to a portion of the distal end of chromosome 16 that is syntenic to the Down syndrome critical region of human chromosome 21., Recent exon-trapping studies have identified in the critical region several exons of a human sim homolog which appears to be the homolog of murine Sim2; this has led to the hypothesis that increased dosage of this sim homolog in cases of trisomy 21 might be a causal factor in the pathogenesis of Down syndrome, We have examined the expression patterns of the Sim genes during embryogenesis. Both genes are expressed in dynamic and selective fashion in specific neuromeric compartments of the developing forebrain, and the expression pattern of Sima provides evidence for early regionalization of the diencephalon prior to any overt morphological differentiation in this region, Outside the CNS, Sim1 is expressed in mesodermal and endodermal tissues, including developing somites, mesonephric duct, and foregut, Sim2 is expressed in facial and trunk cartilage, as well as trunk muscles. Both murine Sim genes are also expressed in the developing kidney, Our data suggest that the Sim genes play roles in directing the regionalization of tissues where they are expressed, Moreover, the expression pattern documented for Sima may provide insights into its potential roles in Down syndrome.
View Full Publication open_in_new
Abstract
WNT signaling plays a major role in patterning the dermomyotome of the somitic mesoderm. However, knowledge of downstream target genes and their regulation is limited. To identify new genes involved in the development and early patterning of the somite, we performed a comparison of gene expression by microarray between the presomitic mesoderm and the 5 most recently formed somites of the mouse at embryonic day 9.5. We identified 207 genes upregulated and 120 genes downregulated in somite formation. Expression analysis and functional categorization of these genes demonstrate this to be a diverse pool that provides a valuable resource for studying somite development. Thus far, we have found three genes expressed in the dermomyotome of the early somite. Consistent with their expression patterns, these genes are transcriptional targets of WNT signals, but display differential activation by different WNTs. We further demonstrate that I of these genes, Troy, is a direct target of canonical WNT signaling, while the other 2 genes, Selp and Arl4, are not. Thus, our microarray study using microdissected tissues not only provides global information on gene expression during somite development, it also provides novel targets to study the inductive signaling pathways that direct somite patterning. (C) 2003 Elsevier Science (USA). All rights reserved.
View Full Publication open_in_new
Abstract
Dynamic gene expression in the PSM of vertebrates is critical for the spatial and temporal patterning of somites.Using microarray analysis, we explored in detail, genes that are differentially regulated upon removal of CREB family function from the mouse PSM.
View Full Publication open_in_new
Abstract
Holoprosencephaly is a heterogeneous developmental malformation of the central nervous system characterized by impaired forebrain cleavage, midline facial anomalies and wide phenotypic variation. Indeed, microforms represent the mildest manifestation, associated with facial anomalies but an intact central nervous system. In many cases, perturbations in sonic hedgehog signaling are responsible for holoprosencephaly. Here, we have elucidated the contribution of Gas1 and an additional hedgehog coreceptor, Boc during early development of the craniofacial midline, by generating single and compound mutant mice. Significantly, we find Boc has an essential role in the etiology of a unique form of lobar holoprosencephaly that only occurs in conjunction with combined loss of Gas1. Whilst Gas1(-/-) mice have microform holoprosencephaly characterized by a single median maxillary central incisor, cleft palate and pituitary anomalies, Boc(-/-) mice have a normal facial midline. However, Gas1(-/-); Boc(-/-) mutants have lobar holoprosencephaly associated with clefting of the lip, palate and tongue, secondary to reduced sonic hedgehog transduction in the central nervous system and face. Moreover, maxillary incisor development is severely disrupted in these mice, arresting prior to cellular differentiation as a result of apoptosis in the odontogenic epithelium. Thus, Boc and Gas1 retain an essential function in these tooth germs, independent of their role in midline development of the central nervous system and face. Collectively, this phenotype demonstrates both redundancy and individual requirements for Gas1 and Boc during sonic hedgehog transduction in the craniofacial midline and suggests BOC as a potential digenic locus for lobar holoprosencephaly in human populations.
View Full Publication open_in_new
Abstract
The myenteric plexus of the enteric nervous system controls the movement of smooth muscles in the gastrointestinal system. They extend their axons between two peripheral smooth muscle layers to form a tubular meshwork arborizing the gut wall. How a tubular axonal meshwork becomes established without invading centrally toward the gut epithelium has not been addressed. We provide evidence here that sonic hedgehog (Shh) secreted from the gut epithelium prevents central projections of enteric axons, thereby forcing their peripheral tubular distribution. Exclusion of enteric central projections by Shh requires its binding partner growth arrest specific gene 1 (Gas1) and its signaling component smoothened (Smo) in enteric neurons. Using enteric neurons differentiated from neurospheres in vitro, we show that enteric axon growth is not inhibited by Shh. Rather, when Shh is presented as a point source, enteric axons turn away from it in a Gas1-dependent manner. Of the Gai proteins that can couple with Smo, G protein alpha Z (Gnaz) is found in enteric axons. Knockdown and dominant negative inhibition of Gnaz dampen the axon-repulsive response to Shh, and Gnaz mutant intestines contain centrally projected enteric axons. Together, our data uncover a previously unsuspected mechanism underlying development of centrifugal tubular organization and identify a previously unidentified effector of Shh in axon guidance.
View Full Publication open_in_new
Abstract
Some patients with soft-tissue sarcoma (STS) report a history of injury at the site of their tumor. Although this phenomenon is widely reported, there are relatively few experimental systems that have directly assessed the role of injury in sarcoma formation. We recently described a mouse model of STS whereby p53 is deleted and oncogenic Kras is activated in muscle satellite cells via a Pax7(CreER) driver following intraperitoneal injection with tamoxifen. Here, we report that after systemic injection of tamoxifen, the vast majority of Pax7-expressing cells remain quiescent despite mutation of p53 and Kras. The fate of these muscle progenitors is dramatically altered by tissue injury, which leads to faster kinetics of sarcoma formation. In adult muscle, quiescent satellite cells will transition into an active state in response to hepatocyte growth factor (HGF). We show that modulating satellite cell quiescence via intramuscular injection of HGF increases the penetrance of sarcoma formation at the site of injection, which is dependent on its cognate receptor c-MET. Unexpectedly, the tumor-promoting effect of tissue injury also requires c-Met. These results reveal a mechanism by which HGF/c-MET signaling promotes tumor formation after tissue injury in a mouse model of primary STS, and they may explain why some patients develop a STS at the site of injury. (C) 2014 AACR.
View Full Publication open_in_new
Abstract
SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans(1-3). SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading(4), pollen nutrition(5) and nectar secretion(6). Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters(1,3). Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6-and 6+1-transmembranehelix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 X 2 triplehelix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan(7-9). The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general.
View Full Publication open_in_new
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, whereas undifferentiated pleomorphic sarcoma (UPS) is one of the most common soft tissue sarcomas diagnosed in adults. To investigate the myogenic cell(s) of origin of these sarcomas, we used Pax7-CreER and MyoD-CreER mice to transform Pax7(+) and MyoD(+) myogenic progenitors by expressing oncogenic Kras G12D and deleting Trp53 in vivo. Pax7-CreER mice developed RMS and UPS, whereas MyoD-CreER mice developed UPS. Using gene set enrichment analysis, RMS and UPS each clustered specifically within their human counterparts. These results suggest that RMS and UPS have distinct and overlapping cells of origin within the muscle lineage. Taking them together, we have established mouse models of soft tissue sarcoma from muscle stem and progenitor cells.
View Full Publication open_in_new
Abstract
Dynamic gene expression in the PSM of vertebrates is critical for the spatial and temporal patterning of somites. Using microarray analysis, we explored in detail, genes that are differentially regulated upon removal of CREB family function from the mouse PSM. Overall design: Mouse PSM from R26R^AC/AC (Control) and R26R^AC/AC;T-Cre (Mutant) were harvested for RNA extraction. Nine PSM's from control and mutant genotypes were combined to generate three biological replicates (three PSM's/replicate). Samples were then applied to microarray analysis to identify differentially expressed genes between controls and mutants.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 870
  • Page 871
  • Page 872
  • Page 873
  • Current page 874
  • Page 875
  • Page 876
  • Page 877
  • Page 878
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026