Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Steele points to a sample of Martian meteorite
    Breaking News
    January 26, 2026

    The rocks that remember what Earth forgot

    Artist’s conception of a disk of material surrounding a young star. Credit: Robin Dienel/Carnegie Science
    Breaking News
    January 22, 2026

    From Planets to Life - Humanity's Oldest Question

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We report here a novel approach to direct gene expression in the mouse somite based on the combined application of adenovirus-mediated gene delivery and whole embryo ex vivo culture. As proof of principle, we show functional analysis of somites microinjected with an engineered virus expressing an activated form of Smoothened, the signaling receptor for Sonic Hedgehog (SHH). As adenovirus can infect many embryonic tissues in the mouse, this method may provide an effective alternative to conventional transgenesis for targeted spatial and temporal gene expression. genesis (c) 2005 Wiley-Liss, Inc.
View Full Publication open_in_new
Abstract
SIM1 is a transcription factor essential for the developmental expression of the endocrine hormone genes, e. g. vasopressin (Vp) and oxytocin (Ot), in the paraventricular nucleus (PVN) and supraoptic nucleus ( SON) of the hypothalamus. Mice mutant for Sim1 lack structural PVN and SON, attributed in previous studies to the death of the PVN/SON progenitor cells. Here, we use a tau-LacZ knock-in allele at the Sim1 locus to trace Sim1 mutant cells and show that they are generated normally and survive to birth, contrasting to the previous proposal. Mutant cells adopt neuronal characteristics and maintain their PVN/SON identity as they continue to express PVN/SON progenitor markers. However, they occupy an ectopic position between the normal PVN and SON, indicating a defect in neuronal migration. To explore candidate molecular cues that contribute to PVN/SON neuronal migration, we focused on the Plexin family of genes. We found that PlexinA1 is expressed in regions surrounding the PVN and SON, whereas PlexinC1 is expressed within the PVN and SON. PlexinA1 expression becomes up-regulated in Sim1 mutant cells, whereas PlexinC1 expression is down-regulated. Finally, the PlexinC1 mutant has a selective defect in partitioning the VP and OT neurons coherently into the PVN and SON. Together, our results uncover a transcriptional regulation of neuronal migration cues initiated by Sim1 that contribute to the organization of the PVN and SON.
View Full Publication open_in_new
Abstract
Cellular signaling initiated by Hedgehog binding to Patched1 has profound importance in mammalian embryogenesis, genetic disease, and cancer. Hedgehog acts as a morphogen to specify distinctive cell fates using different concentration thresholds, but our knowledge of how the concentration gradient is interpreted into the activity gradient is incomplete. The membrane protein Growth Arrest-Specific Gene 1 (GAS1) was thought to be a negative regulator of the Hedgehog concentration gradient. Here, we report unexpected genetic evidence that Gas1 positively regulates Hedgehog signaling in multiple developmental contexts, an effect particularly noticeable at regions where Hedgehog acts at low concentration. Using a combination of in vitro cell culture and in ovo electroporation assays, we demonstrate that GAS1 acts cooperatively with Patched1 for Hedgehog binding and enhances signaling activity in a cell-autonomous manner. Our data support a model in which GAS1 helps transform the Hedgehog protein gradient into the observed activity gradient. We propose that Gas1 is an evolutionarily novel, vertebrate-specific Hedgehog pathway regulator.
View Full Publication open_in_new
Abstract
Holoprosencephaly (HPE) is a clinically heterogeneous developmental anomaly affecting the CNS and face, in which the embryonic forebrain fails to divide into distinct halves. Numerous genetic loci and environmental factors are implicated in HPE, but mutation in the sonic hedgehog (Shh) gene is an established cause in both humans and mice. As growth arrest-specific 1 (Gas1) encodes a membrane glycoprotein previously identified as a Shh antagonist in the somite, we analyzed the craniofacial. phenotype of mice harboring a targeted Gas1 deletion. Gas1(-/-) mice exhibited microform HPE, including midfacial hypoplasia, premaxillary incisor fusion, and cleft palate, in addition to severe ear defects; however, gross integrity of the forebrain remained intact. These defects were associated with partial loss of Shh signaling in cells at a distance from the source of transcription, suggesting that Gas1 can potentiate hedgehog signaling in the early face. Loss of a single Shh allele in a Gas1(-/-) background significantly exacerbated the midline craniofacial phenotype, providing genetic evidence that Sbb and Gasl interact. As human GAS1 maps to chromosome 9q21.3-q22, a region previously associated with nonsyndromic cleft palate and congenital deafness, our results establish GAS1 as a potential locus for several human craniofacial malformations.
View Full Publication open_in_new
Abstract
Growth arrest specific gene 1 (Gas1) has long been regarded as a cell cycle inhibitor of the G(0) to S phase transition. How GAS1, a GPI-anchored plasma membrane protein, directs intracellular changes without an extracellular ligand or a transmembrane protein partner has been puzzling. A recent series of biochemical and molecular genetic studies assigned the mammalian Hedgehog (HH) growth factor to be a ligand for GAS1 in vitro and in vivo. HH has enjoyed considerable attention for its profound role in embryonic patterning as a classic morphogen, i.e. inducing various cell types in a concentration-dependent manner. GAS1 appears to help transform the HH concentration gradient into its morphogenic activity gradient by acting cooperatively with the HH receptor, the 12-transmembrane protein Patched 1 (PTC1). These findings provoke intriguing thoughts on how HH and GAS1 may coordinate cell proliferation and differentiation to create biological patterns. The role of HH extends to human genetic diseases, stem cell renewal, and cancer growth, and we consider the possibility of GAS1's involvement in these processes as well.
View Full Publication open_in_new
Abstract
PWS is caused by the loss of expression of a set of maternally imprinted genes including NECDIN (NDN). NDN is expressed in postmitotic neurons and plays an essential role in PWS as mouse models lacking only the Ndn gene mimic aspects of this disease. Patients haploid for SIM1 develop a PW-like syndrome. Here, we report that NDN directly interacts with ARNT2, a bHLH-PAS protein and dimer partner for SIM1. We also found that NDN can interact with HIF1 alpha. We showed that NDN can repress transcriptional activation mediated by ARNT2:SIM1 as well as ARNT2:HIF1 alpha. The N-terminal 115 residues of NDN are sufficient for interaction with the bHLH domains of ARNT2 or HIF1 alpha but not for transcriptional repression. Using GAL4-NDN fusion proteins, we determined that NDN possesses multiple repression domains. We thus propose that NDN regulates neuronal function and hypoxic response by regulating the activities of the ARNT2:SIM1 and ARNT2:HIF1 alpha dimers, respectively. (C) 2007 Elsevier Inc. All rights reserved.
View Full Publication open_in_new
Abstract
The hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) contain neuroendocrine cells that modulate pituitary secretion to maintain homeostasis. These two nuclei have a common developmental origin but they eventually form at locations distant from each other. Little is known about the molecular cues that direct the segregation of PVN and SON. As a means to identify potential factors, we have documented expression patterns of genes with known guidance roles in neural migration. Here, we focus on two groups of ligand/receptor families classified to mediate chemo-repulsion of neurons and their axons: the Slit/Robo and the Semaphorin/Plexin/Neuropilin families. Their dynamic expression patterns within and around the common PVN/SON progenitor as well as the mature PVN and SON may provide a framework for understanding the formation of these two important nuclei. (C) 2008 Elsevier B.V. All Fights reserved.
View Full Publication open_in_new
Abstract
A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 866
  • Page 867
  • Page 868
  • Page 869
  • Current page 870
  • Page 871
  • Page 872
  • Page 873
  • Page 874
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026