Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The James Webb Space Telescope (JWST) presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. However, the high-precision, timeseries observations required for such investigations have unique technical challenges, and prior experience with Hubble, Spitzer, and other facilities indicates that there will be a steep learning curve when JWST becomes operational. In this paper, we describe the science objectives and detailed plans of the Transiting Exoplanet Community Early Release Science (ERS) Program, which is a recently approved program for JWST observations early in Cycle 1. We also describe the simulations used to establish the program. The goal of this project, for which the obtained data will have no exclusive access period, is to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST, while also providing a compelling set of representative data sets that will enable immediate scientific breakthroughs. The Transiting Exoplanet Community ERS Program will exercise the timeseries modes of all four JWST instruments that have been identified as the consensus highest priorities, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The observations in this program were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. The targets have been vetted with previous measurements, will be observable early in the mission, and have exceptional scientific merit. Community engagement in the project will be centered on a two-phase Data Challenge that culminates with the delivery of planetary spectra, timeseries instrument performance reports, and open-source data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST mission.
View Full Publication open_in_new
Abstract
Data from the SDSS-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) have been released as part of SDSS Data Releases 13 (DR13) and 14 (DR14). These include high-resolution H-band spectra, radial velocities, and derived stellar parameters and abundances. DR13, released in 2016 August, contained APOGEE data for roughly 150,000 stars, and DR14, released in 2017 August, added about 110,000 more. Stellar parameters and abundances have been derived with an automated pipeline, the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). We evaluate the performance of this pipeline by comparing the derived stellar parameters and abundances to those inferred from optical spectra and analysis for several hundred stars. For most elements-C, Na, Mg, Al, Si, S, Ca, Cr, Mn, Ni-the DR14 ASPCAP analyses have systematic differences with the comparisons samples of less than 0.05 dex (median), and random differences of less than 0.15 dex (standard deviation). These differences are a combination of the uncertainties in both the comparison samples as well as the ASPCAP analysis. Compared to the references, magnesium is the most accurate alpha-element derived by ASPCAP, and shows a very clear thin/thick disk separation, while nickel is the most accurate iron-peak element (besides iron itself).
View Full Publication open_in_new
Abstract
KIC 12557548 b is the first of a growing class of intriguing disintegrating planet candidates, which lose mass in the form of a metal-rich vapor that condenses into dust particles. Here, we follow up on two perplexing observations of the system: (1) the transits appeared shallower than average in 2013 and 2014, and (2) the parameters derived from a high-resolution spectrum of the star differed from other results using photometry and low-resolution spectroscopy. We observe five transits of the system with the 61-inch Kuiper telescope in 2016 and show that they are consistent with photometry from the Kepler spacecraft in 2009-2013, suggesting that the dusty tail has returned to normal length and mass. We also evaluate high-resolution archival spectra from the Subaru HDS spectrograph and find them to be consistent with a main-sequence T-eff = 4440 +/- 70 K star in agreement with the photometry and low-resolution spectroscopy. This disfavors the hypothesis that planet disintegration affected the analysis of prior high-resolution spectra of this star. We apply Principal Component Analysis to the Kepler longcadence data to understand the modes of disintegration. There is a tentative 491-day periodicity of the second principal component, which corresponds to possible long-term evolution of the dust grain sizes, though the mechanism on such long timescales remains unclear.
View Full Publication open_in_new
Abstract
Understanding the distribution and occurrence rate of small planets was a fundamental goal of the Kepler transiting exoplanet mission, and could be improved with K2 and Transiting Exoplanet Survey Satellite (TESS). Deriving accurate exoplanetary radii requires accurate measurements of the host star radii and the planetary transit depths, including accounting for any "third light" in the system due to nearby bound companions or background stars. High-resolution imaging of Kepler and K2 planet candidate hosts to detect very close (within similar to 0 ''.5) background or bound stellar companions has been crucial for both confirming the planetary nature of candidates, and the determination of accurate planetary radii and mean densities. Here we present an investigation of the effect of close companions, both detected and undetected, on the observed (raw count) exoplanet radius distribution. We demonstrate that the recently detected "gap" in the observed radius distribution (also seen in the completeness-corrected distribution) is fairly robust to undetected stellar companions, given that all of the systems in the sample have undergone some kind of vetting with high-resolution imaging. However, while the gap in the observed sample is not erased or shifted, it is partially filled in after accounting for possible undetected stellar companions. These findings have implications for the most likely core composition, and thus formation location, of super-Earth and sub-Neptune planets. Furthermore, we show that without high-resolution imaging of planet candidate host stars, the shape of the observed exoplanet radius distribution will be incorrectly inferred, for both Kepler- and TESS-detected systems.
View Full Publication open_in_new
Abstract
We describe a 20 year survey carried out by the Lick-Carnegie Exoplanet Survey Team (LCES), using precision radial velocities from HIRES on the Keck I telescope to find and characterize extrasolar planetary systems orbiting nearby F, G, K, and M dwarf stars. We provide here 60,949 precision radial velocities for 1624 stars contained in that survey. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. These signals are thus strongly suggestive of barycentric reflex motion of the star induced by one or more candidate exoplanets in Keplerian motion about the host star. Of these signals, 225 have already been published as planet claims, 60 are classified as significant unpublished planet candidates that await photometric follow-up to rule out activity-related causes, and 54 are also unpublished, but are classified as "significant" signals that require confirmation by additional data before rising to classification as planet candidates. Of particular interest is our detection of a candidate planet with Msin(i) = 3.8M(circle plus), and P = 9.9 days orbiting Lalande 21185, the fourth-closest main-sequence star to the Sun. For each of our exoplanetary candidate signals, we provide the period and semi-amplitude of the Keplerian orbital fit, and a likelihood ratio estimate of its statistical significance. We also tabulate 18 Keplerian-like signals that we classify as likely arising from stellar activity.
View Full Publication open_in_new
Abstract
We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V = 8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of about 430 mu Hz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (R-* = 2.943 +/- 0.064 R-circle dot), mass (M-* = 1.212 +/- 0.074 M-circle dot), and age (4.9 +/- 1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a "hot Saturn" (R-p = 9.17 +/- 0.33 R-circle plus) with an orbital period of similar to 14.3 days, irradiance of F = 343 +/- 24 F-circle plus, and moderate mass (M-p = 60.5 +/- 5.7 M-circle plus) and density (rho(p) = 0.431 +/- 0.062 g cm(-3)). The properties of HD 221416 b show that the host-star metallicity-planet mass correlation found in sub-Saturns (4-8 R-circle plus) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to similar to 15%, HD 221416 b is one of the best characterized Saturn-size planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology.
View Full Publication open_in_new
Abstract
We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of 1.38(-0.12)(+0.13) R-circle plus, an orbital period of 5.35882(-0.00031)(+0.00030) days, and an equilibrium temperature of 433(-27)(+28) K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3 sigma upper mass limit of 8.4 M-circle plus on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.
View Full Publication open_in_new
Abstract
One of the high-level goals of Galactic archaeology is chemical tagging of stars across the Milky Way to piece together its assembly history. For this to work, stars born together must be uniquely chemically homogeneous. Wide binary systems are an important laboratory to test this underlying assumption. Here, we present the detailed chemical abundance patterns of 50 stars across 25 wide binary systems comprised of main-sequence stars of similar spectral type identified in Gaia DR2 with the aim of quantifying their level of chemical homogeneity. Using high-resolution spectra obtained with McDonald Observatory, we derive stellar atmospheric parameters and precise detailed chemical abundances for light/odd-Z (Li, C, Na, Al, Sc, V, Cu), alpha (Mg, Si, Ca), Fe-peak (Ti, Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements. Results indicate that 80 per cent (20 pairs) of the systems are homogeneous in [Fe/H] at levels below 0.02 dex. These systems are also chemically homogeneous in all elemental abundances studied, with offsets and dispersions consistent with measurement uncertainties. We also find that wide binary systems are far more chemically homogeneous than random pairings of field stars of similar spectral type. These results indicate that wide binary systems tend to be chemically homogeneous but in some cases they can differ in their detailed elemental abundances at a level of [X/H] similar to 0.10 dex, overall implying chemical tagging in broad strokes can work.
View Full Publication open_in_new
Abstract
We present spectroscopic determinations of the effective temperatures, surface gravities, and metallicities for 21 M dwarfs observed at high resolution (R similar to 22,500) in the H band as part of the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The atmospheric parameters and metallicities are derived from spectral syntheses with 1D LTE plane-parallel MARCS models and the APOGEE atomic/molecular line list, together with up-to-date H2O and FeH molecular line lists. Our sample range in T-eff from similar to 3200 to 3800 K, where 11 stars are in binary systems with a warmer (FGK) primary, while the other 10 M dwarfs have interferometric radii in the literature. We define an M-KS-radius calibration based on our M-dwarf radii derived from the detailed analysis of APOGEE spectra and Gaia DR2 distances, as well as a mass-radius relation using the spectroscopically derived surface gravities. A comparison of the derived radii with interferometric values from the literature finds that the spectroscopic radii are slightly offset toward smaller values, with Delta= -0.01 +/- 0.02 R-star/R-circle dot. In addition, the derived M-dwarf masses based upon the radii and surface gravities tend to be slightly smaller (by similar to 5%-10%) than masses derived for M-dwarf members of eclipsing binary systems for a given stellar radius. The metallicities derived for the 11 M dwarfs in binary systems, compared to metallicities obtained for their hotter FGK main-sequence primary stars from the literature, show excellent agreement, with a mean difference of [Fe/H](M dwarf - FGK primary)= +0.04 +/- 0.18 dex, confirming the APOGEE metallicity scale derived here for M dwarfs.
View Full Publication open_in_new
Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 690
  • Page 691
  • Page 692
  • Page 693
  • Current page 694
  • Page 695
  • Page 696
  • Page 697
  • Page 698
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025