Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Campus Event

    Hunting Planets: Celebrating 20 years of Exoplanets

    October 21

    6:45pm EDT

    Seminar

    Re-conceptualizing the Origin of Life

    November 9

    8:00am EST

    Campus Event

    Robert Hazen - Chance, Necessity, and the Origins of Life

    November 12

    6:45pm EST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Steele points to a sample of Martian meteorite
    Breaking News
    January 26, 2026

    The rocks that remember what Earth forgot

    Artist’s conception of a disk of material surrounding a young star. Credit: Robin Dienel/Carnegie Science
    Breaking News
    January 22, 2026

    From Planets to Life - Humanity's Oldest Question

    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Experiments show that the iron isotopic composition of iron meteorites can be explained by core crystallization, and suggest the presence of sulfur-rich core material that remains unsampled by meteorite collections.
View Full Publication open_in_new
Abstract
As a transition metal that is moderately volatile at high temperatures, copper shows limited isotopic fractionation in terrestrial mantle-derived rocks but significant enrichment in its heavier isotope (up to 12.5 parts per thousand for Cu-65/Cu-63) in objects that experienced volatile loss during formation, such as tektites, trinitite glasses, and lunar rocks. Previous efforts to model the Cu isotope fractionation trend from measurements of delta Cu-65 in tektites found that the trend cannot be explained by the theoretical isotope fractionation factor (alpha) for free evaporation of Cu, making it necessary to experimentally study Cu isotope fractionation under conditions similar to tektite formation.
View Full Publication open_in_new
Abstract
Chondrites display isotopic variations for moderately volatile elements, the origin of which is uncertain and could have involved evaporation/condensation processes in the protoplanetary disk, incomplete mixing of the products of stellar nucleosynthesis, or aqueous alteration on parent bodies. Here, we report high-precision K and Rb isotopic data of carbonaceous chondrites, providing new insights into the cause of these isotopic variations. We find that the K and Rb isotopic compositions of carbonaceous chondrites correlate with their abundance depletions, the fractions of matrix material, and previously measured Te and Zn isotopic compositions. These correlations are best explained by the variable contribution of chondrules that experienced incomplete condensation from a supersaturated medium. From the data, we calculate an average chondrule cooling rate of similar to 560 +/- 180 K/hour, which agrees with values constrained from chondrule textures and could be produced in shocks induced by nebular gravitational instability or motion of large planetesimals through the the nebula.
View Full Publication open_in_new
Abstract
The Fe isotopic composition of twenty four glacial diamictite composites with depositional ages ranging from the Mesoarchean to the Palaeozoic serve as proxies of the average upper continental crust (UCC) and can be used to track how delta Fe-56 may have changed in the continental crust through time. The diamictites have elevated chemical index of alteration (CIA) values and other characteristics of weathered regoliths e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source regions. The delta Fe-56 values in the diamictite composites range from -0.59 parts per thousand to +0.23 parts per thousand. Excluding three samples impacted by the incorporation of materials from Fe formations, the diamictites have an average delta Fe-56 of 0.12 +/- 0.13 parts per thousand (2 sigma), overlapping the recent estimated average delta Fe-56 of 0.09 +/- 0.03 %o (2 s.d.) in the upper continental crust (Dauphas et al., 2017, and references therein). There is no obvious correlation between delta Fe-56 of the glacial diamictites and the CIA. Our data suggest that the Fe isotope composition of the upper continental crust has been relatively constant throughout Earth history and that chemical weathering is not important in producing Fe isotope variations in the upper continental crust. Pre-Great Oxidation Event (GOE) anoxic weathering, when iron was soluble in its divalent state, did not generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, the large Fe isotopic fractionations observed in various marine sedimentary records are likely due to processes occurring in the oceans (e.g., biological activity) rather than abiotic redox reactions on the continents.
View Full Publication open_in_new
Abstract
The variability of iron isotopes among rocky bodies in the inner Solar System provides a window onto the diversity of materials and mechanisms from which they formed. The magnitude of isotopic variation in mantle-derived rocks within a given body is similar to that between different planetary bodies. Isotopic signatures arising from primordial events, namely, evaporation/condensation, core formation and melting/crystallization, may be progressively diluted, modified, and redistributed over time by global recycling processes such as plate tectonics. Here, we assess the relative influence of these primordial mechanisms on the iron isotope compositions of igneous rocks and their implications for the structure and accretion histories of rocky planets.
View Full Publication open_in_new
Missing Headshot

Jui-Ko Chang

Graduate Student

Missing Headshot

Yunpeng Fu

Graduate Student

Missing Headshot

Yiming Mao

Graduate Student

Missing Headshot

Dianne Williams

Research Technician - HHMI

Pagination

  • Previous page chevron_left
  • …
  • Page 690
  • Page 691
  • Page 692
  • Page 693
  • Current page 694
  • Page 695
  • Page 696
  • Page 697
  • Page 698
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026