Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Isotopic fractionation associated with diffusion in crystals is the most reliable means of understanding the origin of mineral zoning in igneous and metamorphic rocks. We have experimentally determined the relative diffusivities of iron isotopes in olivine as a function of crystallographic orientation, composition, and temperature. For two isotopes i and j of an element, the isotope effect for diffusion is parameterized as D-i/D-j = (m(j)/m(i))(beta), where beta is a dimensionless parameter, and D and m stand for diffusivity and mass, respectively. A series of single crystal diffusion couple experiments were conducted at an oxygen fugacity of QFM - 1.5 at temperatures of 1200, 1300, and 1400 degrees C. For the Fo(83.4)-Fo(88.8) composition pair, beta(Fe) is isotropic and a value of 0.16 +/- 0.09 can be used to describe diffusion along all major crystallographic axes in olivine. Based on our experiments and previously reported coupled Mg-Fe isotopic data, we also estimate beta(Mg) = 0.09 +/- 0.05 for this range of olivine composition. For the Fo(88.8)-Fo(100) composition pair, beta(Fe) becomes anisotropic with beta(Fe [100]) = 0.11 +/- 0.03, beta(Fe [010]) = 0.14 +/- 0.03 (both within error of the value measured for the Fo(83.4)-Fo(88.8) pair), and beta(Fe [001]) = 0.03 +/- 0.03. For Fo# between 83.4 and 100, beta(Fe [100]) and beta(Fe [010]) are thus independent of composition. The reason why beta(Fe) ([001]) transitions from similar to 0.16 to similar to 0.03 close to the Mg-endmember is unclear. Over the temperature range studied, a dependence of beta(Fe) on temperature was not resolved. General analytical expressions are introduced to calculate isotopic fractionation as a function of distance, time, beta, and the concentration contrast between the diffusing media for spherical, cylindrical, and planar geometries. (C) 2018 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
We have conducted high-pressure, high-temperature isotope exchange experiments between molten silicate and molten Fe-Si-C-alloys to constrain the effect of Si on equilibrium Fe isotope fractionation during planetary core formation. The values of Delta Fe-57(Metal-Silicate) at 1850 degrees C and 1 GPa determined by high-resolution MC-ICP-MS in this study range from -0.013 +/- 0.054 parts per thousand (2SE) to 0.072 +/- 0.085 parts per thousand with 1.34-8.14 atom % Si in the alloy, respectively. These results, although not definitive on their own, are consistent with previous experimental results from our group and a model in which elements that substitute for Fe atoms in the alloy structure (i.e., Ni, S, and Si) induce a fractionation of Fe isotopes between molten silicate and molten Fe-alloys during planetary differentiation. Using in situ synchrotron X-ray diffraction data for molten Fe-rich alloys from the literature, we propose a model to explain this fractionation behavior in which impurity elements in Fe-alloys cause the nearest neighbor atomic distances to shorten, thereby stiffening metallic bonds and increasing the preference of the alloy for heavy Fe isotopes relative to the silicate melt. This fractionation results in the bulk silicate mantles of the smaller terrestrial planets and asteroids becoming isotopically light relative to chondrites, with an enrichment of heavy Fe isotopes in their cores, consistent with magmatic iron meteorite compositions. Our model predicts a bulk silicate mantle delta Fe-57 ranging from -0.01 parts per thousand to -0.12 parts per thousand for the Moon, -0.06 parts per thousand to -0.33 parts per thousand for Mars, and -0.08 parts per thousand to B -0.33 parts per thousand for Vesta. Independent estimates of the delta Fe-57 of primitive mantle source regions that account for Fe isotope fractionation during partial melting agree well with these ranges for all three planetary bodies and suggest that Mars and Vesta have cores with impurity (i.e., Ni, S, Si) abundances near the low end of published ranges. Therefore, we favor a model in which core formation results in isotopically light bulk silicate mantles for the Moon, Mars, and Vesta. The processes of magma ocean crystallization, mantle partial melting, and fractional crystallization of mantle-derived melts are all likely to result in heavy Fe isotope enrichment in the melt phase, which can explain why basaltic samples from these planetary bodies have variable delta Fe-57 values consistently heavier than our bulk mantle estimates. Additionally, we find no clear evidence that Fe isotopes were fractionated to a detectable level by volatile depletion processes during or after planetary accretion, although it cannot be ruled out. (C) 2019 Elsevier B.V. All rights reserved.
View Full Publication open_in_new
Abstract
Mercury, the Solar System's innermost planet, has an unusually massive core prompting speculation that the planet lost silicate after it formed. Using the unusually high sulfur and low iron composition of its surface and space geodetic constraints on its core composition, we show Mercury's chemistry to be compatible with formation in a larger planet at minimum 1.4-2.5 times Mercury's present mass and possibly 2-4 times its mass by similarity with other rocky Solar System bodies. To do this, we apply an experimentally determined metal-silicate partitioning model for sulfur to Mercury's silicate. The model is validated by applying it to Vesta, which, when evaluated at the conditions of Vestan self-differentiation, yields sulfur contents in its silicate in the range of HED meteorites. Mercury could have lost a substantial fraction of its rocky material through impacts or by being itself a remnant impactor. Independent of any stripping, because a significant amount of silicon resides in Mercury's core, silicate meteoritic debris from Mercury would likely be characterized by Si-30 isotopic enrichment >+ 0.10 parts per thousand relative to parent sources that could aid identification of a new meteorite class.
View Full Publication open_in_new
Abstract
Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is one of the most popular techniques for determining trace element concentrations in sulfides. Due to the lack of matrix-matched standards, standardization of sulfide analyses are usually based on silicate glass calibrant materials. Matrix effects during ns-LA-ICP-MS analyses of Fe-rich sulfides were quantified for many trace elements by comparison of elemental concentrations obtained by LA-ICP-MS and electron microprobe (EPMA) for many synthetic sulfides. The data was used to obtain the fractionation indices (F-i, the ratio between the EPMA- and LA-ICP-MS-determined concentrations of element i) for many elements while considering Fe, Cu and Ni as internal standards. The results show that significant (>15% RD) matrix effects arise during ns-LA-ICP-MS analyses of Ti, Zn, Ge, Se, Mo, Cd, In, Sb, Te, Pb, Bi in sulfides when using Fe as the internal standard. The use of Ni as an internal standard yields on average higher F-i values for most elements, resulting in more pronounced matrix effects for refractory elements and less so for volatile elements, relative to Fe. The use of Cu as an internal standard yields overall more significant matrix effects for volatile elements (i.e., lower F-i values). The F-i values for most elements remain constant with increasing concentrations, and matrix correction factors for these elements can therefore be applied across the ppm to wt% range. In agreement with previous observations for Fe-rich metals and silicate glasses, the magnitudes of the matrix effects for the various elements are strongly correlated with elemental volatility. This correlation was used to obtain a predictive model for describing F-i for Fe-rich sulfides. The results were used to assess the effects of matrix effects on calculated sulfide liquid-silicate melt partition coefficients derived from experiments. Matrix effects arising through the use of non-matrix-matched standards will result in significant discrepancies between measured and true partition coefficients, the extent mainly depending of the volatility of the element considered. Corrections on ns-LA-ICP-MS derived element concentrations therefore need to be performed to obtain true abundances in the absence of matrix-matched standards.
View Full Publication open_in_new
Abstract
Subducting tectonic plates carry water and other surficial components into Earth's interior. Previous studies suggest that serpentinized peridotite is a key part of deep recycling, but this geochemical pathway has not been directly traced. Here, we report Fe-Ni-rich metallic inclusions in sublithospheric diamonds from a depth of 360 to 750 km with isotopically heavy iron (delta Fe-56 = 0.79 to 0.90 parts per thousand) and unradiogenic osmium (Os-187/Os-188 = 0.111). These iron values lie outside the range of known mantle compositions or expected reaction products at depth. This signature represents subducted iron from magnetite and/or Fe-Ni alloys precipitated during serpentinization of oceanic peridotite, a lithology known to carry unradiogenic osmium inherited from prior convection and melt depletion. These diamond-hosted inclusions trace serpentinite subduction into the mantle transition zone. We propose that iron-rich phases from serpentinite contribute a labile heavy iron component to the heterogeneous convecting mantle eventually sampled by oceanic basalts.
View Full Publication open_in_new
Abstract
Interpreting isotopic signatures documented in natural rocks requires knowledge of equilibrium isotopic fractionation factors. Here, we determine equilibrium Fe isotope fractionation factors between several common rock-forming minerals using a comparative approach involving three independent methods: (i) isotopic analyses of natural minerals from a metapelite from Mt. Moosilauke, New Hampshire, for which equilibration temperature and pressure are well constrained to be near the aluminosilicate triple point (T similar or equal to 500 degrees C, P similar or equal to 4 kbar), (ii) Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements of Fe force constants of minerals, and (iii) Density Functional Theory (DFT) ab initio calculations of Fe force constants of minerals.
View Full Publication open_in_new
Abstract
Experiments show that the iron isotopic composition of iron meteorites can be explained by core crystallization, and suggest the presence of sulfur-rich core material that remains unsampled by meteorite collections.
View Full Publication open_in_new
Abstract
As a transition metal that is moderately volatile at high temperatures, copper shows limited isotopic fractionation in terrestrial mantle-derived rocks but significant enrichment in its heavier isotope (up to 12.5 parts per thousand for Cu-65/Cu-63) in objects that experienced volatile loss during formation, such as tektites, trinitite glasses, and lunar rocks. Previous efforts to model the Cu isotope fractionation trend from measurements of delta Cu-65 in tektites found that the trend cannot be explained by the theoretical isotope fractionation factor (alpha) for free evaporation of Cu, making it necessary to experimentally study Cu isotope fractionation under conditions similar to tektite formation.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 687
  • Page 688
  • Page 689
  • Page 690
  • Current page 691
  • Page 692
  • Page 693
  • Page 694
  • Page 695
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025