Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Electric sector capacity expansion models are widely used by academic, government, and industry researchers for policy analysis and planning. Many models overlap in their capabilities, spatial and temporal resolutions, and research purposes, but yield diverse results due to both parametric and structural differences. Previous work has attempted to identify some differences among commonly used capacity expansion models but has been unable to disentangle parametric from structural uncertainty. Here, we present a model benchmarking effort using highly simplified scenarios applied to four open-source models of the U.S. electric sector. We eliminate all parametric uncertainty through using a common dataset and leave only structural differences. We demonstrate how a systematic model comparison process allows us to pinpoint specific and important structural differences among our models, including specification of technologies as baseload or load following generation, battery state-ofcharge at the beginning and end of a modeled period, application of battery roundtrip efficiency, treatment of discount rates, formulation of model end effects, and digit precision of input parameters. Our results show that such a process can be effective for improving consistency across models and building model confidence, substantiating specific modeling choices, reporting uncertainties, and identifying areas for further research and development. We also introduce an open-source test dataset that the modeling community can use for unit testing and build on for benchmarking exercises of more complex models. A community benchmarking effort can increase collaboration among energy modelers and provide transparency regarding the energy transition and energy challenges, for other stakeholders such as policymakers.
View Full Publication open_in_new
Abstract
Electricity systems worldwide are transforming from relying almost exclusively on firm, predictable generation (e.g., fossil, nuclear, and large hydropower) towards incorporating more variable generation (e.g., wind and solar PV). In these systems, the electric load minus generation from variable resources is known as the "residual load."The peak residual load provides an estimate of the dispatchable power capacity required to supply electric load during all hours. We analyze a decade of concurrent historical electric load and weather data from four electricity systems. For each system, we construct hypothetical, plausible residual load profiles to study the peak residual load values and their spread from year to year, the "inter-annual variability,"as a function of wind and solar generation. The inter-annual variability in the peak residual load can be equated with the spread in dispatchable power capacity required to supply all load from year to year in electricity systems. In each system, adding variable generation changed the inter-annual variability in the peak residual load values. The introduction of variable renewable power is often thought to increase the variability of most electricity systems characteristics. In contrast, using our simple approach, we show the inter-annual variability in peak residual load may decrease with added solar generation in systems where peak load occurs in the summer months. We attribute these reductions to correlations between the availability of solar generation and the hours of peak electric load, which occurred during the hottest days each year, when electric cooling (air conditioning) was likely used. Also, we show the inter-annual variability in peak residual load decreased in certain circumstances when adding wind generation to the system with a winter peaking load. An understanding of how and why this spread in peak dispatchable power capacity changes with increasing wind and solar deployment could inform long-term planning and resource adequacy targets for electricity systems.
View Full Publication open_in_new
Abstract
We performed spectral analyses on the ages of 89 well-dated major geological events of the last 260 Myr from the recent geologic literature. These events include times of marine and non-marine extinctions, major ocean-anoxic events, continental flood-basalt eruptions, sea-level fluctuations, global pulses of intraplate magmatism, and times of changes in seafloor-spreading rates and plate reorganizations. The aggregate of all 89 events shows ten clusters in the last 260 Myr, spaced at an average interval of similar to 26.9 Myr, and Fourier analysis of the data yields a spectral peak at 27.5 Myr at the >= 96% confidence level. A shorter period of similar to 8.9 Myr may also be significant in modulating the timing of geologic events. Our results suggest that global geologic events are generally correlated, and seem to come in pulses with an underlying similar to 27.5-Myr cycle. These cyclic pulses of tectonics and climate change may be the result of geophysical processes related to the dynamics of plate tectonics and mantle plumes, or might alternatively be paced by astronomical cycles associated with the Earth's motions in the Solar System and the Galaxy. (C) 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.
View Full Publication open_in_new
Abstract
Solar and wind resources are dependent on geophysical constraints. Here the authors find that solar and wind power resources can satisfy countries' electricity demand of between 72-91% of hours, but hundreds of hours of unmet demand may occur annually.
View Full Publication open_in_new
Abstract
Variability of wind and solar generation and electricity demand poses substantial challenges to the affordable supply of reliable electricity. In a modeling study published in Energy & Environmental Science, Guerra and colleagues find that a portfolio of energy storage technologies provides the least-cost path to reliable electricity supply.
View Full Publication open_in_new
Abstract
Non-marine tetrapods (amphibians, reptiles, birds and mammals) have apparently experienced at least 10 distinct episodes of intensified extinctions over the past 300 My. Eight of these ten non-marine extinction events are concurrent with known marine-extinction episodes, which previously yielded evidence for an underlying period of similar to 26.4 to 27.3 My. We performed circular spectral analysis and Fourier transform analysis of the ages of the ten recognised tetrapod-extinction events, and detected a statistically significant (99% confidence) underlying periodicity of similar to 27.5 My. We also find that the eight coeval non-marine/marine-extinction pulses all occurred at the times of eruptions of Large Igneous Provinces (LIPs) (continental flood-basalts and oceanic plateaus), with potentially severe environmental effects. Three of these co-extinction episodes are further correlated with the ages of the three largest (>= 100-km diameter) impact craters of the last 260 My, which are also apparently capable of causing extinction events. These findings suggest that global cataclysmal events with an underlying periodicity of similar to 27.5 My were the cause of the coordinated periodic extinction episodes of non-marine tetrapods and marine organisms.
View Full Publication open_in_new
Abstract
When wind turbines are arranged in clusters, their performance is mutually affected, and their energy generation is reduced relative to what it would be if they were widely separated. Land-area power densities of small wind farms can exceed 10 W/m2, and wakes are several rotor diameters in length. In contrast, large-scale wind farms have an upper-limit power density in the order of 1 W/m2 and wakes that can extend several tens of kilometers. Here, we address two important questions: 1) How large can a wind farm be before its generation reaches energy replenishment limits and 2) How far apart must large wind farms be spaced to avoid inter-wind-farm interference? We characterize controls on these spatial and temporal scales by running a set of idealized atmospheric simulations using the Weather and Research Forecasting model. Power generation and wind speed within and over the wind farm show that a timescale inversely proportional to the Coriolis parameter governs such transition, and the corresponding length scale is obtained by multiplying the timescale by the geostrophic wind speed. A geostrophic wind of 8 m/s and a Coriolis parameter of 1.05 x 10-4 rad/s (latitude of similar to 46 degrees) would give a transitional scale of about 30 km. Wind farms smaller than this result in greater power densities and shorter wakes. Larger wind farms result instead in power densities that asymptotically reach their minimum and wakes that reach their maximum extent.
View Full Publication open_in_new
Abstract
As reliance on wind and solar power for electricity generation increases, so does the importance of understanding how variability in these resources affects the feasible, cost-effective ways of supplying energy services. We use hourly weather data over multiple decades and historical electricity demand data to analyze the gaps between wind and solar supply and electricity demand for California (CA) and the Western Interconnect (WECC). We quantify the occurrence of resource droughts when the daily power from each resource was less than half of the 39-year daily mean for that day of the year. Averaged over 39 years, CA experienced 6.6 days of solar and 48 days of wind drought per year, compared to 0.41 and 19 for WECC. Using a macro-scale electricity model, we evaluate the potential for both long-term storage and more geographically diverse generation resources to minimize system costs. For wind-solar-battery electricity systems, meeting California demand with WECC generation resources reduces the cost by 9% compared to constraining resources entirely to California. Adding long-duration storage lowers system costs by 21% when treating California as an island. This data-driven analysis quantifies rare weather-related events and provides an understanding that can be used to inform stakeholders in future electricity systems.
View Full Publication open_in_new
Abstract
Our circular-spectral and Fourier analyses of the ages of the 10 recognized non-marine tetrapod extinction events over the last 300 My revealed a significant spectral peak at 27.5 My. Omerbashich, using his GaussVanicek method of spectral analysis, fails to find a significant 27.5 My cycle in the same data. He claims to find predominant short (< 1 My) Earth precession cycles in the data set, where the smallest interval between extinction events is 8 My. In response to Omerbashich, we performed a new analysis of non-marine extinctions using a best-fit method that again displays the high spectral peak at similar to 27.5 My.
View Full Publication open_in_new
Abstract
New designs of advanced nuclear power plants have been proposed that may allow nuclear power to be less expensive and more flexible than conventional nuclear. It is unclear how and whether such a system would complement variable renewables in decarbonized electricity systems. Here we modelled stylized electricity systems under a least-cost optimization framework taking into account technoeconomic factors only, considering electricity demand and renewable potential in 42 country-level regions. In our model, in moderate decarbonization scenarios, solar and wind can provide less costly electricity when competing against nuclear at near-current US Energy Information Administration (US$6,317 per kilowatt-electric (kWe)) and at US$4,000 kWe(-1) cost levels. In contrast, in deeply decarbonized systems (for example, beyond similar to 80% emissions reduction) and in the absence of low-cost grid-flexibility mechanisms, nuclear can be competitive with solar and wind. High-quality wind resources can make it difficult for nuclear to compete. Thermal heat storage coupled to nuclear power can, in some cases, promote wind and solar.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 674
  • Page 675
  • Page 676
  • Page 677
  • Current page 678
  • Page 679
  • Page 680
  • Page 681
  • Page 682
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025