Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Artist's rendering of the Giant Magellan Telescope courtesy of Damien Jemison, Giant Magellan Telescope - GMTO Corporation
    Breaking News
    June 12, 2025

    NSF advances Giant Magellan Telescope to Final Design Phase

    Interns hold hands in before cheering "Science!"
    Breaking News
    June 10, 2025

    Say "Hello" to the 2025 EPIIC Interns

    Vera Rubin Measuring Slides
    Breaking News
    June 03, 2025

    Dr. Vera Rubin Commemorative Quarter Enters Circulation

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Ocean acidification threatens many marine organisms, especially marine calcifiers. The only global-scale solution to ocean acidification remains rapid reduction in CO2 emissions. Nevertheless, interest in localized mitigation strategies has grown rapidly because of the recognized threat ocean acidification imposes on natural communities, including ones important to humans. Protection of seagrass meadows has been considered as a possible approach for localized mitigation of ocean acidification due to their large standing stocks of organic carbon and high productivity. Yet much work remains to constrain the magnitudes and timescales of potential buffering effects from seagrasses. We developed a biogeochemical box model to better understand the potential for a temperate seagrass meadow to locally mitigate the effects of ocean acidification. Then we parameterized the model using data from Tomales Bay, an inlet on the coast of California, USA which supports a major oyster farming industry. We conducted a series of month-long model simulations to characterize processes that occur during summer and winter. We found that average pH in the seagrass meadows was typically within 0.04 units of the pH of the primary source waters into the meadow, although we did find occasional periods (hours) when seagrass metabolism may modify the pH by up to +/- 0.2 units. Tidal phasing relative to the diel cycle modulates localized pH buffering within the seagrass meadow such that maximum buffering occurs during periods of the year with midday low tides. Our model results suggest that seagrass metabolism in Tomales Bay would not provide long-term ocean acidification mitigation. However, we emphasize that our model results may not hold in meadows where assumptions about depth-averaged net production and seawater residence time within the seagrass meadow differ from our model assumptions. Our modeling approach provides a framework that is easily adaptable to other seagrass meadows in order to evaluate the extent of their individual buffering capacities. Regardless of their ability to buffer ocean acidification, seagrass meadows maintain many critically important ecosystem goods and services that will be increasingly important as humans increasingly affect coastal ecosystems.
View Full Publication open_in_new
Abstract
The distribution of anthropogenic aerosols' climate effects depends on the geographic distribution of the aerosols themselves. Yet many scientific and policy discussions ignore the role of emission location when evaluating aerosols' climate impacts. Here, we present new climate model results demonstrating divergent climate responses to a fixed amount and composition of aerosol-emulating China's present-day emissions-emitted from 8 key geopolitical regions. The aerosols' global-mean cooling effect is fourteen times greater when emitted from the highest impact emitting region (Western Europe) than from the lowest (India). Further, radiative forcing, a widely used climate response proxy, fails as an effective predictor of global-mean cooling for national-scale aerosol emissions in our simulations; global-mean forcing-to-cooling efficacy differs fivefold depending on emitting region. This suggests that climate accounting should differentiate between aerosols emitted from different countries and that aerosol emissions' evolving geographic distribution will impact the global-scale magnitude and spatial distribution of climate change.
View Full Publication open_in_new
Abstract
Arctic amplification is a consequence of surface albedo, cloud, and temperature feedbacks, as well as poleward oceanic and atmospheric heat transport. However, the relative impact of changes in sea surface temperature (SST) patterns and ocean heat flux sourced from different regions on Arctic temperatures are not well constrained. We modify ocean-to-atmosphere heat fluxes in the North Pacific and North Atlantic in a climate model to determine the sensitivity of Arctic temperatures to zonal heterogeneities in northern hemisphere SST patterns. Both positive and negative ocean heat flux perturbations from the North Pacific result in greater global and Arctic surface air temperature anomalies than equivalent magnitude perturbations from the North Atlantic; a response we primarily attribute to greater moisture flux from the subpolar extratropics to Arctic. Enhanced poleward latent heat and moisture transport drive sea-ice retreat and low-cloud formation in the Arctic, amplifying Arctic surface warming through the ice-albedo feedback and infrared warming effect of low clouds. Our results imply that global climate sensitivity may be dependent on patterns of ocean heat flux in the northern hemisphere.
View Full Publication open_in_new
Abstract
The social cost of carbon (SCC) is a commonly employed metric of the expected economic damages from carbon dioxide (CO2) emissions. Although useful in an optimal policy context, a world-level approach obscures the heterogeneous geography of climate damage and vast differences in country-level contributions to the global SCC, as well as climate and socio-economic uncertainties, which are larger at the regional level. Here we estimate country-level contributions to the SCC using recent climate model projections, empirical climate-driven economic damage estimations and socio-economic projections. Central specifications show high global SCC values (median, US$417 per tonne of CO2 (tCO(2)); 66% confidence intervals, US$177-805 per tCO(2)) and a country-level SCC that is unequally distributed. However, the relative ranking of countries is robust to different specifications: countries that incur large fractions of the global cost consistently include India, China, Saudi Arabia and the United States.
View Full Publication open_in_new
Abstract
We examine the potential for climate change to impact fertility via adaptations in human behavior. We start by discussing a wide range of economic channels through which climate change might impact fertility, including sectoral reallocation, the gender wage gap, longevity, and child mortality. Then, we build a quantitative model that combines standard economic-demographic theory with existing estimates of the economic consequences of climate change. In the model, increases in global temperature affect agricultural and non-agricultural sectors differently. Near the equator, where many poor countries are located, climate change has a larger negative effect on agriculture. The resulting scarcity in agricultural goods acts as a force towards higher agricultural prices and wages, leading to a labor reallocation into this sector. Since agriculture makes less use of skilled labor, climate damage decreases the return to acquiring skills, inducing parents to invest less resources in the education of each child and to increase fertility. These patterns are reversed at higher latitudes, suggesting that climate change may exacerbate inequities by reducing fertility and increasing education in richer northern countries, while increasing fertility and reducing education in poorer tropical countries. While the model only examines the role of one mechanism, it suggests that climate change could have an impact on fertility, indicating the need for future work on this important topic.
View Full Publication open_in_new
Abstract
Geoengineering has been proposed as a backup approach to rapidly cool the Earth and avoid damages associated with anthropogenic climate change. In this study, we use the NCAR Community Earth System Model to conduct a series of slab-ocean and prescribed sea surface temperature simulations to investigate the climate response to three proposed radiation management geoengineering schemes: stratospheric aerosol increase (SAI), marine cloud brightening (MCB), and cirrus cloud thinning (CCT). Our simulations show that different amounts of radiative forcing are needed for these three schemes to compensate global mean warming induced by a doubling of atmospheric CO2. With radiative forcing defined in terms of top-of-atmosphere energy imbalances in prescribed sea surface temperature simulations with land temperature adjustments, radiative forcing efficacy for SAI is about 15% smaller than that of CO2, and the efficacy for MCB and CCNCCT is about 10% larger than that of CO2. In our simulations, different forcing efficacies are associated with different feedback processes for these forcing agents. Also, these geoengineering schemes produce different land-ocean temperature change contrasts. The apparent hydrological sensitivity, that is, change in equilibrium global mean precipitation per degree of equilibrium temperature change, differs substantially between CO2, SAI, MCB, and CCNCCT forcings, which is mainly a result of different precipitation responses during fast adjustment. After removing the component of fast adjustment, the northward movement of the Intertropical Convergence Zone in response to these forcing agents is tightly related with changes in the interhemispheric energy exchange and hemispheric temperature gradient.
View Full Publication open_in_new
Abstract
Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts(1-5). Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions(6-13). Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (degrees C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)(5), and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 degrees C (1,170-1,500 gigatonnes CO2)(5). The remaining carbon budget estimates are varied and nuanced(14,15), and depend on the climate target and the availability of large-scale negative emissions(16). Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals(17). Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable(4,18).
View Full Publication open_in_new
Abstract
Microplastics are emerging contaminants in the marine environment. They enter the ocean in a variety of sizes and shapes, with plastic microfiber being the prevalent form in seawater and in the guts of biota. Most of the laboratory experiments on microplastics has been performed with spheres, so knowledge on the interactions of microfibers and marine organisms is limited. In this study we examined the ingestion of microfibers by the sea anemone Aiptasia pallida using three different types of polymers: nylon, polyester and polypropylene. The polymers were offered to both symbiotic (with algal symbionts) and bleached (without algal symbionts) anemones. The polymers were introduced either alone or mixed with brine shrimp homogenate. We observed a higher percentage of nylon ingestion compared to the other polymers when plastic was offered in the absence of shrimp. In contrast, we observed over 80% of the anemones taking up all types of polymers when the plastics were offered in the presence of shrimp. Retention time differed significantly between symbiotic and bleached anemones with faster egestion in symbiotic anemones. Our results suggest that ingestion of microfibers by sea anemones is dependent both on the type of polymers and on the presence of chemical cues of prey in seawater. The decreased ability of bleached anemones to reject plastic microfiber indicates that the susceptibility of anthozoans to plastic pollution is exacerbated by previous exposure to other stressors. This is particularly concerning given that coral reef ecosystems are facing increases in the frequency and intensity of bleaching events due to ocean warming. (C) 2019 The Authors. Published by Elsevier Ltd.
View Full Publication open_in_new
Abstract
Solar geoengineering has been suggested as a potential means to counteract anthropogenic warming. Major volcanic eruptions have been used as natural analogues to large-scale deployments of stratospheric aerosol geoengineering, yet difference in climate responses to these forcings remains unclear. Using the National Center for Atmospheric Research Community Earth System Model, we compare climate responses to two highly idealized stratospheric aerosol forcings that have different durations: a short-term pulse representative of volcanic eruptions and a long-term sustained forcing representative of geoengineering. For the same amount of global mean cooling, decreases in land temperature, precipitation, and runoff in the pulse case are much larger than that in the sustained case. The spatial pattern changes differ substantially between these two cases. Thus, direct extrapolations from volcanic eruption observations provide limited insight into impacts of potential stratospheric aerosol geoengineering. However, simulations of volcanic eruptions can be useful to test process representations in models that are used to simulate geoengineering deployments.
View Full Publication open_in_new
Abstract
In this study, we use the National Center for Atmospheric Research Community Earth System Model to investigate the contribution of sea ice and land snow to the climate sensitivity in response to increased atmospheric carbon dioxide content. We focus on the overall effect arising from the presence or absence of sea ice and/or land snow. We analyze our results in terms of the radiative forcing and climate feedback parameter. We find that the presence of sea ice and land snow decreases the climate feedback parameter (and thus increases climate sensitivity). Adjusted radiative forcing from added carbon dioxide is comparatively less sensitive to the presence of sea ice or land snow. The effect of sea ice on the climate feedback parameter decreases as sea ice cover diminishes at higher CO2 concentration. However, the influence of both sea ice and land snow on the climate feedback parameter remains substantial under the CO2 concentration range considered here (to eight times preindustrial CO2 content). Approximately, one quarter of the effect of sea ice and land snow on the climate feedback parameter is a consequence of the effect of these components on longwave feedback that is mainly associated with cloud change. Polar warming in response to added CO2 is approximately doubled by the presence of sea ice and land snow. Relative to the case in which sea ice and land snow are absent in the model, in response to increased CO2 concentrations, the presence of sea ice and land snow results in an increase in global mean warming by over 40%.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 645
  • Page 646
  • Page 647
  • Page 648
  • Current page 649
  • Page 650
  • Page 651
  • Page 652
  • Page 653
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025