Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Katelyn Horstman (Caltech)

    Searching for exo-satellites and brown dwarf binaries using the Keck Planet Imager and Characterizer (KPIC)

    January 30

    12:15pm PST

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The receptor-like kinase SIT1 acts as a sensor in rice (Oryza sativa) roots, relaying salt stress signals via elevated kinase activity to enhance salt sensitivity. Here, we demonstrate that Protein Phosphatase 2A (PP2A) regulatory subunit B'kappa constrains SIT1 activity under salt stress. B'kappa-PP2A deactivates SIT1 directly by dephosphorylating the kinase at Thr515/516, a salt-induced phosphorylation site in the activation loop that is essential for SIT1 activity. B'kappa overexpression suppresses the salt sensitivity of rice plants expressing high levels of SIT1, thereby contributing to salt tolerance. B'kappa functions in a SIT1 kinase-dependent manner. During early salt stress, activated SIT1 phosphorylates B'kappa; this not only enhances its binding with SIT1, it also promotes B'kappa protein accumulation via Ser502 phosphorylation. Consequently, by blocking SIT1 phosphorylation, B'kappa inhibits and fine-tunes SIT1 activity to balance plant growth and stress adaptation.
View Full Publication open_in_new
Abstract
The American biologist Winslow Russel Briggs (1928-2019) was a global leader in plant physiology, genetics and photobiology. In this contribution, we try to share our knowledge of the remarkable career of this outstanding scientist. After earning his PhD at Harvard (Cambridge, Massachusetts), he started his independent research program at Stanford University (California). Among many major contributions was his elegant experiment that conclusively demonstrated the role of auxin transport in the phototropic bending response of grass coleoptiles. During subsequent years as Professor of biology at Harvard University, Briggs focused on phytochrome and photomorphogenesis. In 1973, he re-located to Stanford to become Director of the Department of Plant Biology, Carnegie Institution for Science, and faculty member in the Biology Department at Stanford University. After his retirement (1993), he continued his research on "light and plant development" as an emeritus at Carnegie until the day of his death on February 11, 2019. Through his long research career, Briggs stayed at the cutting edge by re-inventing himself from a plant physiologist, to biochemist, geneticist, and molecular biologist. He made numerous discoveries, including the LOV-domain photoreceptor phototropin. Winslow Briggs, who was also a naturalist and gifted pianist, inspired and promoted the work of generations of young scientists - as mentor, colleague and friend.
View Full Publication open_in_new
Abstract
Soybean is a widely grown grain legume and one of the most important economic crop species. Brassinosteroids play a crucial role in plant vegetative growth and reproductive development. However, it remains unclear how BRs regulate the developmental processes in soybean, and the molecular mechanism underlying soybean early development is largely unexplored. In this study, we first characterized how soybean early vegetative growth was specifically regulated by the BR biosynthesis inhibitor propiconazole; this characterization included shortened root and shoot lengths, reduced leaf area, and decreased chlorophyll content. In addition, the growth inhibition induced by Pcz could be rescued by exogenous brassinolide application. The RNA-seq technique was employed to investigate the BR regulatory networks during soybean early vegetative development. Identification and analysis of differentially expressed genes indicated that BRs orchestrate a wide range of cellular activities and biological processes in soybean under various BR concentrations. The regulatory networks between BRs and multiple hormones or stress-related pathways were investigated. The results provide a comprehensive view of the physiological functions of BRs and new insights into the molecular mechanisms at the transcriptional level of BR regulation of soybean early development.
View Full Publication open_in_new
Abstract
Coordinating stress defense and plant growth is a survival strategy for adaptation to different environments that contains a series of processes, such as, cell growth, division and differentiation. However, little is known about the coordination mechanism for protein conformation change. A cyclophilin OsCYP20-2 with a variant interacts with SLENDER RICE1 (SLR1) and OsFSD2 in the nucleus and chloroplasts, respectively, to integrate chilling tolerance and cell elongation in rice (Oryza sativa) (FSD2, Fe-superoxide dismutase 2). Mass spectrum assay showed that OsNuCYP20-2 localized at the nucleus (nuclear located OsCYP20-2) was a new variant of OsCYP20-2 that truncated 71 amino-acid residues in N-terminal. The loss-of function OsCYP20-2 mutant showed sensitivity to chilling stress with accumulation of extra reactive oxygen species (ROS). In chloroplasts, the full-length OsCYP20-2 promotes OsFSD2 forming homodimers which enhance its activity, eliminating the accumulation of ROS under chilling stress. However, the mutant had shorter epidermal cells in comparison with wild-type Hwayoung (HY). In the nucleus, OsCYP20-2 caused conformation change of SLR1 to promote its degradation for cell elongation. Our data reveal a cyclophilin with a variant with dual-localization in chloroplasts and the nucleus, which mediate chilling tolerance and cell elongation.
View Full Publication open_in_new
Abstract
The spatiotemporal balance between stem cell maintenance, proliferation, and differentiation determines the rate of root growth and is controlled by hormones, including auxin and brassinosteroid (BR). However, the spatial actions of BR and its interactions with auxin remain unclear in roots. Here, we show that oppositely patterned and antagonistic actions of BR and auxin maintain the stem cell balance and optimal root growth. We discover a pattern of low levels of nuclear-localized BR-activated transcription factor BZR1 in the stem cell niche and high BZR1 levels in the transition-elongation zone. This BZR1 pattern requires local BR catabolism and auxin synthesis, as well as BR signaling. Cell-type-specific expression of a constitutively active form of BZR1 confirms that the high and low levels of BZR1 are required for the normal cell behaviors in the elongation zone and quiescent center (QC), respectively. Comparison between BR-responsive, BZR1-targeted, auxin-responsive, and developmental zone-specific transcriptomes indicates that BZR1 mostly activates its target genes expressed in the transition-elongation zone, but represses genes in the QC and surrounding stem cells, and that BR and auxin have overall opposite effects on gene expression. Genetic and physiological interactions support that a balance between the antagonistic actions of BR and auxin is required for optimal root growth. These results demonstrate that the level and output specificity of BR signaling are spatially patterned and that, in contrast to their synergism in shoots, BR and auxin interact antagonistically in roots to control the spatiotemporal balance of stem cell dynamics required for optimal root growth.
View Full Publication open_in_new
Abstract
plant growth is coordinately regulated by environmental and hormonal signals. Brassinosteroid (BR) plays essential roles in growth regulation by light and temperature, but the interactions between BR and these environmental signals remain poorly understood at the molecular level. Here, we show that direct interaction between the dark- and heat-activated transcription factor phytochrome-interacting factor4 (PIF4) and the BR-activated transcription factor BZR1 integrates the hormonal and environmental signals. BZR1 and PIF4 interact with each other in vitro and in vivo, bind to nearly 2,000 common target genes, and synergistically regulate many of these target genes, including the PRE family helix-loop-helix factors required for promoting cell elongation. Genetic analysis indicates that BZR1 and PIFs are interdependent in promoting cell elongation in response to BR, darkness or heat. These results show that the BZR1-PIF4 interaction controls a core transcription network, enabling plant growth co-regulation by the steroid and environmental signals.
View Full Publication open_in_new
Abstract
SWI/SNF-type chromatin remodelers, such as BRAHMA (BRM), and H3K27 demethylases both have active roles in regulating gene expression at the chromatin level(1-5), but how they are recruited to specific genomic sites remains largely unknown. Here we show that RELATIVE OF EARLY FLOWERING 6 (REF6), a plant-unique H3K27 demethylase(6), targets genomic loci containing a CTCTGYTY motif via its zinc-finger (ZnF) domains and facilitates the recruitment of BRM. Genome-wide analyses showed that REF6 colocalizes with BRM at many genomic sites with the CTCTGYTY motif. Loss of REF6 results in decreased BRM occupancy at BRM-REF6 co-targets. Furthermore, REF6 directly binds to the CTCTGYTY motif in vitro, and deletion of the motif from a target gene renders it inaccessible to REF6 in vivo. Finally, we show that, when its ZnF domains are deleted, REF6 loses its genomic targeting ability. Thus, our work identifies a new genomic targeting mechanism for an H3K27 demethylase and demonstrates its key role in recruiting the BRM chromatin remodeler.
View Full Publication open_in_new
Abstract
Comparison of differential gene expression in WT (Col-0) and bsu-q, and flg22-responsive genes in Col-0 and bsu-q.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 604
  • Page 605
  • Page 606
  • Page 607
  • Current page 608
  • Page 609
  • Page 610
  • Page 611
  • Page 612
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026