Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 16

    7:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
O-GlcNAc modification plays important roles in metabolic regulation of cellular status. Two homologs of O-GlcNAc transferase, SECRET AGENT (SEC) and SPINDLY (SPY), which have O-GlcNAc and O-fucosyl transferase activities, respectively, are essential in Arabidopsis but have largely unknown cellular targets. Here we show that AtACINUS is O-GlcNAcylated and O-fucosylated and mediates regulation of transcription, alternative splicing (AS), and developmental transitions. Knocking-out both AtACINUS and its distant paralog AtPININ causes severe growth defects including dwarfism, delayed seed germination and flowering, and abscisic acid (ABA) hypersensitivity. Transcriptomic and protein-DNA/RNA interaction analyses demonstrate that AtACINUS represses transcription of the flowering repressor FLC and mediates AS of ABH1 and HAB1, two negative regulators of ABA signaling. Proteomic analyses show AtACINUS's O-GlcNAcylation, O-fucosylation, and association with splicing factors, chromatin remodelers, and transcriptional regulators. Some AtACINUS/AtPININ-dependent AS events are altered in the sec and spy mutants, demonstrating a function of O-glycosylation in regulating alternative RNA splicing. AtACINUS is an Arabidopsis homolog of a mammalian splicing regulator and previously found to be O-GlcNAcyated. Here Bi et al. characterize the interactors and targets of AtACINUS, show it is required for development and stress responses and provide evidence that its O-glycosylation affects alternative splicing.
View Full Publication open_in_new
Abstract
Many plants increase in freezing tolerance in response to low temperature, a process known as cold acclimation. In Arabidopsis, cold acclimation involves action of the CBF cold response pathway. Key components of the pathway include rapid cold-induced expression of three homologous genes encoding transcriptional activators, CBF1, 2 and 3 (also known as DREB1b, c and a, respectively), followed by expression of CBF-targeted genes, the CBF regulon, that increase freezing tolerance. Unlike Arabidopsis, tomato cannot cold acclimate raising the question of whether it has a functional CBF cold response pathway. Here we show that tomato, like Arabidopsis, encodes three CBF homologs, LeCBF1-3 (Lycopersicon esculentum CBF1-3), that are present in tandem array in the genome. Only the tomato LeCBF1 gene, however, was found to be cold-inducible. As is the case for Arabidopsis CBF1-3, transcripts for LeCBF1-3 did accumulate in response to mechanical agitation, but not in response to drought, ABA or high salinity. Constitutive overexpression of LeCBF1 in transgenic Arabidopsis plants induced expression of CBF-targeted genes and increased freezing tolerance indicating that LeCBF1 encodes a functional homolog of the Arabidopsis CBF1-3 proteins. However, constitutive overexpression of either LeCBF1 or AtCBF3 in transgenic tomato plants did not increase freezing tolerance. Gene expression studies, including the use of a cDNA microarray representing approximately 8000 tomato genes, identified only four genes that were induced 2.5-fold or more in the LeCBF1 or AtCBF3 overexpressing plants, three of which were putative members of the tomato CBF regulon as they were also upregulated in response to low temperature. Additional experiments indicated that of eight tomato genes that were likely orthologs of Arabidopsis CBF regulon genes, none were responsive to CBF overexpression in tomato. From these results, we conclude that tomato has a complete CBF cold response pathway, but that the tomato CBF regulon differs from that of Arabidopsis and appears to be considerably smaller and less diverse in function.
View Full Publication open_in_new
Abstract
Stomatal development requires asymmetric cell division and cell-fate determination, in which BASL is an essential regulator. The binding partners of BASL are now identified and characterized to reveal the molecular mechanism of cell-fate asymmetry in stomata.
View Full Publication open_in_new
Abstract
The study of the metabolite complement of biological samples, known as metabolomics, is creating large amounts of data, and support for handling these data sets is required to facilitate meaningful analyses that will answer biological questions. We present a data model for plant metabolomics known as ArMet (architecture for metabolomics). It encompasses the entire experimental time line from experiment definition and description of biological source material, through sample growth and preparation to the results of chemical analysis. Such formal data descriptions, which specify the full experimental context, enable principled comparison of data sets, allow proper interpretation of experimental results, permit the repetition of experiments and provide a basis for the design of systems for data storage and transmission. The current design and example implementations are freely available (http://www.armet.org/). We seek to advance discussion and community adoption of a standard for metabolomics, which would promote principled collection, storage and transmission of experiment data.
View Full Publication open_in_new
Abstract
Uncertainty and inconsistency of gene structure annotation remain limitations on research in the genome era, frustrating both biologists and bioinformaticians, who have to sort out annotation errors for their genes of interest or to generate trustworthy datasets for algorithmic development. It is unrealistic to hope for better software solutions in the near future that would solve all the problems. The issue is all the more urgent with more species being sequenced and analyzed by comparative genomics - erroneous annotations could easily propagate, whereas correct annotations in one species will greatly facilitate annotation of novel genomes. We propose a dynamic, economically feasible solution to the annotation predicament: broad-based, web-technology-enabled community annotation, a prototype of which is now in use for Arabidopsis.
View Full Publication open_in_new
Abstract
We describe an ontology for cell types that covers the prokaryotic, fungal, animal and plant worlds. It includes over 680 cell types. These cell types are classified under several generic categories and are organized as a directed acyclic graph. The ontology is available in the formats adopted by the Open Biological Ontologies umbrella and is designed to be used in the context of model organism genome and other biological databases. The ontology is freely available at http://obo.sourceforge.net/ and can be viewed using standard ontology visualization tools such as OBO-Edit and COBrA.
View Full Publication open_in_new
Abstract
In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seedto-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.
View Full Publication open_in_new
Abstract
The Arabidopsis Information Resource (TAIR; http://www.arabidopsis.org) is a comprehensive Web resource of Arabidopsis biology for plant scientists. TAIR curates and integrates information about genes, proteins, gene expression, mutant phenotypes, biological materials such as DNA and seed stocks, genetic markers, genetic and physical maps, biochemical pathways, genome organization, images of mutant plants and protein sub-cellular localizations, publications, and the research community Data in TAIR are extensively interconnected and can be accessed through a variety of Web-based search and display tools. This unit primarily focuses on some basic methods for searching, browsing, visualizing, and analyzing information about Arabidopsis genes. Gene expression data from microarrays is a recent addition to the database and methods for accessing these data are also described. Two pattern identification programs are described for mining TAIR's unique Arabidopsis sequence data sets. We also describe how to use AraCyc for mining plant metabolic pathways.
View Full Publication open_in_new
Abstract
Isotopically dimethyl labeling was applied in a quantitative post-translational modification (PTM) proteomic study of phosphoproteomic changes in the drought responses of two contrasting soybean cultivars. A total of 9457 phosphopeptides were identified subsequently, corresponding to 4571 phosphoprotein groups and 3889 leading phosphoproteins, which contained nine kinase families consisting of 279 kinases. These phosphoproteins contained a total of 8087 phosphosites, 6106 of which were newly identified and constituted 54% of the current soybean phosphosite repository. These phosphosites were converted into the highly conserved kinase docking sites by bioinformatics analysis, which predicted six kinase families that matched with those newly found nine kinase families. The overly post-translationally modified proteins (OPP) occupies 2.1% of these leading phosphoproteins. Most of these OPPs are photoreceptors, mRNA-, histone-, and phospholipidbinding proteins, as well as protein kinase/phosphatases. The subgroup population distribution of phosphoproteins over the number of phosphosites of phosphoproteins follows the exponential decay law, Y = 4.13e(-0.)(098X)_ 0.04. Out of 218 significantly regulated unique phosphopeptide groups, 188 phosphoproteins were regulated by the drought-tolerant cultivar under the water loss condition. These significantly regulated phosphoproteins (SRP) are mainly enriched in the biological functions of water transport and deprivation, methionine metabolic processes, photosynthesis/light reaction, and response to cadmium ion, osmotic stress, and ABA response. Seventeen and 15 SRPs are protein kinases/phosphatases and transcription factors, respectively. Bioinformatics analysis again revealed that three members of the calcium dependent protein kinase family (CAMK family), GmSRK2I, GmCIPK25, and GmAKIN beta 1 kinases, constitute a phosphor-relay-mediated signal transduction network, regulating ion channel activities and many nuclear events in this drought-tolerant cultivar, which presumably contributes to the development of the soybean drought tolerance under water deprivation process.
View Full Publication open_in_new
Abstract
MetaCyc ( http:// metacyc. org) contains experimentally determined biochemical pathways to be used as a reference database for metabolism. In conjunction with the Pathway Tools software, MetaCyc can be used to computationally predict the metabolic pathway complement of an annotated genome. To increase the breadth of pathways and enzymes, more than 60 plant- specific pathways have been added or updated in MetaCyc recently. In contrast to MetaCyc, which contains metabolic data for a wide range of organisms, AraCyc is a species- specific database containing only enzymes and pathways found in the model plant Arabidopsis ( Arabidopsis thaliana). AraCyc ( http:// arabidopsis. org/ tools/ aracyc/) was the first computationally predicted plant metabolism database derived from MetaCyc. Since its initial computational build, AraCyc has been under continued curation to enhance data quality and to increase breadth of pathway coverage. Twenty- eight pathways have been manually curated from the literature recently. Pathway predictions in AraCyc have also been recently updated with the latest functional annotations of Arabidopsis genes that use controlled vocabulary and literature evidence. AraCyc currently features 1,418 unique genes mapped onto 204 pathways with 1,156 literature citations. The Omics Viewer, a user data visualization and analysis tool, allows a list of genes, enzymes, or metabolites with experimental values to be painted on a diagram of the full pathway map of AraCyc. Other recent enhancements to both MetaCyc and AraCyc include implementation of an evidence ontology, which has been used to provide information on data quality, expansion of the secondary metabolism node of the pathway ontology to accommodate curation of secondary metabolic pathways, and enhancement of the cellular component ontology for storing and displaying enzyme and pathway locations within subcellular compartments.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 603
  • Page 604
  • Page 605
  • Page 606
  • Current page 607
  • Page 608
  • Page 609
  • Page 610
  • Page 611
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025