Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Featured Staff Member

    Guillermo Blanc

    Dr. Guillermo Blanc

    Associate Director for Strategic Initiatives

    Learn More
    Observatory Staff
    Dr. Guillermo Blanc
    Associate Director for Strategic Initiatives

    Guillermo Blanc researches galaxy evolution and advances scientific infrastructure projects at Carnegie Science’s Las Campanas Observatory.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Hawaiian bobtail squid
    Public Program

    The Ink-Credible Power of Symbiosis

    Margaret McFall-Ngai

    September 15

    4:00pm PDT

    A researcher conducting fieldwork at the Slave Craton, Canada
    Workshop

    TIMES Kickoff Workshop

    Jennifer Kasbohm

    August 12

    12:00pm EDT

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Image Tube Spectrograph
    Breaking News
    July 22, 2025

    Five Objects That Tell Vera Rubin’s Story

    Las Campanas Observatory
    Breaking News
    July 10, 2025

    The History of Las Campanas Observatory

    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina. II ( Car II) and Carina. III ( Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey ( MagLiteS). We identify 18 member stars in Car. II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocity v(hel) = 477.2 +/- 1.2 km s(-1) and a velocity dispersion of sigma(v) 3.4(-0.8)(vertical bar 1.2) km s(-1). Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of 1.0(-0.4)(+0.8) x 10(6) M circle dot, indicating a mass-to-light ratio of 369(-161)(+309) M circle dot/L circle dot. From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of [Fe/H] = -2.44 +/- 0.09 with dispersion sigma([Fe/H]) = 0.22(-0.07)(+0.10). Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of vhel = 284.6(-3.1)(+3.4) km S-1. The brightest RGB member of Car. III has a metallicity of [Fe/H] = -1.97 +/- 0.12. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation (Delta d similar to 10 kpc) among Local Group satellites, the large difference in their systemic velocities, similar to 200 km s(-1), indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud (LMC), and may remain LMC satellites today. No statistically significant excess of gamma-ray emission is found at the locations of Car II and Car III in eight years of Fermi-LAT data.
View Full Publication open_in_new
Abstract
We report the discovery of two ultra-faint satellites in the vicinity of the Large Magellanic Cloud (LMC) in data from the Magellanic Satellites Survey (MagLiteS). Situated 18 deg (similar to 20 kpc) from the LMC and separated from each other by only 18 arcmin, Carina II and III form an intriguing pair. By simultaneously modelling the spatial and the colour-magnitude stellar distributions, we find that both Carina II and Carina III are likely dwarf galaxies, although this is less clear for Carina III. There are in fact several obvious differences between the two satellites. While both are well described by an old and metal poor population, Carina II is located at similar to 36 kpc from the Sun, with M-V similar to -4.5 and r(h) similar to 90 pc, and it is further confirmed by the discovery of 3 RR Lyrae at the right distance. In contrast, Carina III is much more elongated, measured to be fainter (M-V similar to -2.4), significantly more compact (r(h) similar to 30 pc), and closer to the Sun, at similar to 28 kpc, placing it only 8 kpc away from Car II. Together with several other systems detected by the Dark Energy Camera, Carina II and III form a strongly anisotropic cloud of satellites in the vicinity of the Magellanic Clouds.
View Full Publication open_in_new
Abstract
Context. Understanding the evolutionary history of the Magellanic Clouds requires an in-depth exploration and characterization of the stellar content in their outer regions, which ultimately are key to tracing the epochs and nature of past interactions.
View Full Publication open_in_new
Abstract
We report the discovery of a new ultra-faint stellar system found near the Magellanic Clouds in the DECam Local Volume Exploration Survey. This new system, DELVE J0155-6815 (DELVE 2), is located at a heliocentric distance of D-circle dot = 71 +/- 4 kpc, which places it at a 3D physical separation of 12 +/- 3 kpc from the center of the Small Magellanic Cloud and 28(-3)(+4) kpc from the center of the Large Magellanic Cloud ( LMC). DELVE 2 is identified as a resolved overdensity of old (tau > 13.3 Gyr) and metal-poor ([Fe/H] = -2.0(-0.5)(+0.2) dex) stars with a projected half-light radius of r(1/2) = 21(-3)(+4) pc and an absolute magnitude of M-V = -2.1(-0.5)(+0.4) mag. The size and luminosity of DELVE 2 are consistent with both the population of recently discovered ultra-faint globular clusters and the smallest ultra-faint dwarf galaxies. However, its photometrically derived age and metallicity would place it among the oldest and most metal-poor globular clusters in the Magellanic system. In the absence of spectroscopic measurements of the system's metallicity dispersion and internal kinematics, we are unable to conclusively classify this system at this time. DELVE 2 is detected in Gaia DR2 with a clear proper-motion signal, with multiple blue horizontal-branch stars near the centroid of the system with proper motions consistent with the systemic mean. We measure the system proper motion to be (mu(alpha) cos delta, mu(delta)) = (1.02(-0.25)(+0.24), -0.85(-0.19)(+0.18) mas yr(-1). We compare the spatial position and proper motion of DELVE 2 with simulations of the accreted satellite population of the LMC and find that it is very likely to be associated with the LMC.
View Full Publication open_in_new
Abstract
We report the detection of three RR Lyrae (RRL) stars (two RRc and one RRab) in the ultra-faint dwarf (UFD) galaxy Centaurus I (Cen I) and two Milky Way (MW) delta Scuti/SX Phoenicis stars based on multi-epoch giz DECam observations. The two RRc stars are located within two times the half-light radius (r ( h )) of Cen I, while the RRab star (CenI-V3) is at similar to 6 r ( h ). The presence of three distant RRL stars clustered this tightly in space represents a 4.7 sigma excess relative to the smooth distribution of RRL in the Galactic halo. Using the newly detected RRL stars, we obtain a distance modulus to Cen I of mu (0) = 20.354 +/- 0.002 mag (sigma = 0.03 mag), a heliocentric distance of D (circle dot) = 117.7 +/- 0.1 kpc (sigma = 1.6 kpc), with systematic errors of 0.07 mag and 4 kpc. The location of the Cen I RRL stars in the Bailey diagram is in agreement with other UFD galaxies (mainly Oosterhoff II). Finally, we study the relative rate of RRc+RRd (RRcd) stars (f (cd)) in UFD and classical dwarf galaxies. The full sample of MW dwarf galaxies gives a mean of f (cd) = 0.28. While several UFD galaxies, such as Cen I, present higher RRcd ratios, if we combine the RRL populations of all UFD galaxies, the RRcd ratio is similar to the one obtained for the classical dwarfs (f (cd) similar to 0.3). Therefore, there is no evidence for a different fraction of RRcd stars in UFD and classical dwarf galaxies.
View Full Publication open_in_new
Abstract
We present the discovery of a candidate ultra-faint Milky-Way satellite, Eridanus IV (DELVE J0505-0931), detected in photometric data from the DECam Local Volume Exploration survey (DELVE). Eridanus IV is a faint (M-V = - 4.7 +/- 0.2), extended (r(1/2)=75(-13)(+16) pc ), and elliptical (epsilon = 0.54 +/- 0.1) system at a heliocentric distance of 76.7(-6.1)(+4.0)kpc, with a stellar population that is well described by an old, metal-poor isochrone (age of tau similar to 13.0 Gyr and metallicity of [Fe/H] less than or similar to - 2.1 dex). These properties are consistent with the known population of ultra-faint Milky-Way satellite galaxies. Eridanus IV is also prominently detected using proper-motion measurements from Gaia Early Data Release 3, with a systemic proper motion of (mu(alpha) cos delta,mu(delta))=(+0.25 +/- 0.06,-0.10 +/- 0.05) mas yr(-1) measured from its horizontal branch and red-giant-branch member stars. We find that the spatial distribution of likely member stars hints at the possibility that the system is undergoing tidal disruption.
View Full Publication open_in_new
Abstract
A fully sampled and hitherto highest resolution and sensitivity observation of neutral hydrogen (H I) in the Leo Triplet (NGC 3628, M 65/NGC 3623, and M 66/NGC 3627) reveals six H I structures beyond the three galaxies. We present detailed results of the morphologies and kinematics of these structures, which can be used for future simulations. In particular, we detect a two-arm structure in the plume of NGC 3628 for the first time, which can be explained by a tidal interaction model. The optical counterpart of the plume is mainly associated with the southern arm. The connecting part (base) of the plume (directed eastward) with NGC 3628 is located at the blueshifted (western) side of NGC 3628. Two bases appear to be associated with the two arms of the plume. A clump with a reversed velocity gradient (relative to the velocity gradient of M 66) and a newly detected tail, that is to say M 66SE, is found in the southeast of M 66. We suspect that M 66SE represents gas from NGC 3628, which was captured by M 66 in the recent interaction between the two galaxies. Meanwhile gas is falling toward M 66, resulting in features previously observed in the southeastern part of M 66, such as large line widths and double peaks. An upside-down "Y"-shaped H I gas component (M 65S) is detected in the south of M 65, which suggests that M 65 may also have been involved in the interaction. We strongly encourage modern hydrodynamical simulations of this interacting group of galaxies to reveal the origin of the gaseous debris surrounding all three galaxies.
View Full Publication open_in_new
Abstract
We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of similar to 160,000 exposures that cover >21,000 deg(2) of the high-Galactic-latitude ( divide b divide > 10 degrees) sky in four broadband optical/near-infrared filters (g, r, i, z). DELVE DR2 provides point-source and automatic aperture photometry for similar to 2.5 billion astronomical sources with a median 5 sigma point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of similar to 17,000 deg(2) has been imaged in all four filters, providing four-band photometric measurements for similar to 618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform.
View Full Publication open_in_new
Abstract
The geosphere of primitive Earth was the source of life's essential building blocks, and the geochemical interactions among chemical elements can inform the origins of biological roles of each element. Minerals provide a record of the fundamental properties that each chemical element contributes to crustal composition, evolution, and subsequent biological utilization. In this study, we investigate correlations between the mineral species and bulk crustal composition of each chemical element. There are statistically significant correlations between the number of elements that each element forms minerals with (#-mineral-elements) and the log of the number of mineral species that each element occurs in, and between #-mineral-elements and the log of the number of mineral localities of that element. There is a lesser correlation between the log of the crustal percentage of each element and #-mineral-elements. In the crustal percentage vs. #-mineral-elements plot, positive outliers have either important biological roles (S, Cu) or toxic biological impacts (Pb, As), while negative outliers have no biological importance (Sc, Ga, Br, Yb). In particular, S is an important bridge element between organic (e.g., amino acids) and inorganic (metal cofactors) biological components. While C and N rarely form minerals together, the two elements commonly form minerals with H, which coincides with the role of H as an electron donor/carrier in biological nitrogen and carbon fixation. Both abundant crustal percentage vs. #-mineral-elements insiders (elements that follow the correlation) and less abundant outsiders (positive outliers from the correlation) have important biological functions as essential structural elements and catalytic cofactors.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 592
  • Page 593
  • Page 594
  • Page 595
  • Current page 596
  • Page 597
  • Page 598
  • Page 599
  • Page 600
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025