Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
An extensive study of peridotitic sulfide inclusion bearing diamonds and their prospective harzburgitic host rocks from the 53 Ma Panda kimberlite pipe, Ekati Mine, NWT Canada, has been undertaken with the Re-Os system to establish their age and petrogenesis. Diamonds with peridotitic sulfide inclusions have poorly aggregated nitrogen (< 30% N as B centers) at N contents of 200-800 ppm which differs from that of chromite and silicate bearing diamonds and indicates residence in the cooler portion of the Slave craton lithospheric mantle. For most of the sulfide inclusions, relatively low Re contents (average 0.457 ppm) and high Os contents (average 339 ppm) lead to extremely low Os-187/Os-188, typically << 0.05. An age of 3.52 +/- 0.17 Ga (MSWD = 0.46) and a precise initial Os-187/Os-188 of 0.1093 +/- 0.0001 are given by a single regression of 11 inclusions from five diamonds that individually provide coincident internal isochrons. This initial Os isotopic composition is 6% enriched in Os-187 over 3.5 Ga chondritic or primitive mantle. Sulfide inclusions with less radiogenic initial Os isotopic compositions reflect isotopic heterogeneity in diamond forming fluids. The harzburgites have even lower initial Os-187/Os-188 than the sulfide inclusions, some approaching the isotopic composition of 3.5 Ga chondritic mantle. In several cases isotopically distinct sulfides occur in different growth zones of the same diamond. This supports a model where C-O-H-S fluids carrying a radiogenic Os signature were introduced into depleted harzburgite and produced diamonds containing sulfides conforming to the 3.5 Ga isochron. Reaction of this fluid with harzburgite led to diamonds with less radiogenic inclusions while elevating the Os isotope ratios of some harzburgites. Subduction is a viable way of introducing such fluids. This implies a role for subduction in creating early continental nuclei at 3.5 Ga and generating peridotitic diamonds.
View Full Publication open_in_new
Abstract
New volatile (H2O, CO2, S), halogen (F, Cl) and trace-element data for selected fresh MORB glasses are reported from two geologically and geophysically well-studied regions on the East Pacific Rise (8-10 degrees N and 12-14 degrees N) with distinct differences in spreading rate and magma supply. Sample locations include on-axis and young off-axis eruptions, as well as off-axis fissures, abyssal hills and pillow mounds. H2O, F, S and trace-element concentrations increase with decreasing MgO content, displaying over-enriched liquid lines of descent consistent with combined fractional and in-situ crystallization. A negative correlation between CO2/Nb and MgO indicates simultaneous degassing and magma crystallization, while broadening of this correlation to lower CO2/ Nb at constant MgO indicates shallow degassing and CO2 loss during magma transport to the seafloor.
View Full Publication open_in_new
Abstract
In order to constrain the highly siderophile elements (HSE: Re and platinum group elements (PGE: Os, Ir, Ru, Pt and Pd)) host mineral(s) in refractory, base metal sulfide-free mantle residues, four very depleted spinel-harzburgites from the Lherz massif (France) have been analyzed for HSE in whole-rock and in major mineral separates (olivine, orthopyroxene, clinopyroxene and spinel) by isotope dilution. In addition, HSE host minerals have been separated and analyzed with a scanning electron microscope. Olivine and spinel show the highest HSE concentration especially for Os, Ir, Ru and Pt (up to 10 ppb) among the modally-major minerals, while the pyroxenes are 1-2 orders of magnitude poorer in HSE. The major minerals account for less than 30% of the whole-rock platinum group element budget. On the other hand, rare, micron to sub-micron platinum group minerals (PGM), such as Ru-Os +/- Ir sulfides and Pt-Ir +/- Os alloys, likely located in the intergranular spaces of the refractory depleted harzburgite, account for 50-100% of the HSE budget. The PGM grains are interpreted to be residual, having formed in response to the complete consumption of the base-metal sulfides by the high degree of partial melting (i.e. 23-24%) experienced by these samples. As they sequester the compatible platinum group elements (Os, Ir, Ru and Pt) in the mantle residue, these PGM provide key constraints for the modelling of PGE contents in terrestrial basalts (e.g. the solid/liquid partition coefficients needed to account for the compatible behavior of these elements in the mantle residue) and for understanding the long-lived Os isotope heterogeneities of the upper mantle, especially the old Re-Os ages found in young oceanic mantle. In fact, because of their Os-rich compositions and high melting temperatures, these microphases are likely to preserve their initial Os isotopic compositions unmodified over multiple events of mantle melting and mixing, and therefore generate, through recycling, heterogeneous Os isotopic signatures at different scales in the convecting mantle. (C) 2007 Elsevier Ltd. All rights reserved.
View Full Publication open_in_new
Abstract
We have precisely measured Os isotopic ratios in bulk samples of five carbonaceous, two enstatite and two ordinary chondrites, as well as the acid-resistant residues of three carbonaceous chondrites. All bulk meteorite samples have uniform Os-186/Os-188, Os-188/Os-189 and Os-190/Os-189 ratios, when decomposed by an alkaline fusion total digestion technique. These ratios are also identical to estimates for Os in the bulk silicate Earth. Despite Os isotopic homogeneity at the bulk meteorite scale, acid insoluble residues of three carbonaceous chondrites are enriched in Os-186, Os-188 and Os-190, isotopes with major contributions from stellar s-process nucleosynthesis. Conversely, these isotopes are depleted in acid soluble portions of the same meteorites. The complementary enriched and depleted fractions indicate the presence of at least two types of Os-rich components in these meteorites, one enriched in Os isotopes produced by s-process nucleosynthesis, the other enriched in isotopes produced by the r-process. Presolar silicon carbide is the most probable host for the s-process-enriched Os present in the acid insoluble residues. Because the enriched and depleted components present in these meteorites are combined in proportions resulting in a uniform chondritic/terrestrial composition, it requires that disparate components were thoroughly mixed within the solar nebula at the time of the initiation of planetesimal accretion. This conclusion contrasts with evidence from the isotopic compositions of some other elements (e.g., Sm, Nd, Ru, Mo) that suggests heterogeneous distribution of matter with disparate nucleosynthetic sources within the nebula. Published by Elsevier B.V.
View Full Publication open_in_new
Abstract
Considerable geochemical evidence supports initiation of plate tectonics on Earth shortly after the end of the Hadean. Nb/Th and Th/U of mafic-ultramafic rocks from the depleted upper mantle began to change from 7 to 18.2 and 4.2 to 2.6 ( respectively) at 3.6 Ga. This signals the appearance of subduction-altered slabs in general mantle circulation from subduction initiated by 3.9 Ga. Juvenile crustal rocks began to show derivation from progressively depleted mantle with typical igneous epsilon(Nd):epsilon(Hf) = 1: 2 after 3.6 Ga. Cratons with stable mantle keels that have subduction imprints began to appear by at least 3.5 Ga. These changes all suggest that extraction of continental crust by plate tectonic processes was progressively depleting the mantle from 3.6 Ga onwards. Neo-archean subduction appears largely analogous to present subduction except in being able to produce large cratons with thick mantle keels. The earliest Eoarchean juvenile rocks and Hadean zircons have isotopic compositions that reflect the integrated effects of separation of an early enriched reservoir and fractionation of Ca-silicate and Mg-silicate perovskite from the terrestrial magma oceans associated with Earth accretion and Moon formation, superposed on subsequent crustal processes. Hadean zircons most likely were derived from a continent-absent, mafic to ultramafic protocrust that was multiply remelted between 4.4 and 4.0 Ga under wet conditions to produce evolved felsic rocks. If the protocrust was produced by global mantle overturn at ca. 4.4 Ga, then the transition to plate tectonics resulted from radioactive decay-driven mantle heating. Alternatively, if the protocrust was produced by typical mantle convection, then the transition to plate tectonics resulted from cooling to the extent that large lithospheric plates stabilized.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 527
  • Page 528
  • Page 529
  • Page 530
  • Current page 531
  • Page 532
  • Page 533
  • Page 534
  • Page 535
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025