Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We observed 12 Plutinos over two separated years with the 4.3 m Lowell's Discovery Channel Telescope. Here, we present the first light-curve data for those objects. Three of them (2014 JL(80), 2014 JO(80), and 2014 JQ(80)) display a large light-curve amplitude explainable by a single elongated object, but they are most likely caused by a contact binary system due to their light-curve morphology. These potential contact binaries have rotational periods from 6.3 to 34.9 hr and peak-to-peak light-curve variability between 0.6 and 0.8 mag. We present partial light curves, allowing us to constrain the light-curve amplitude and the rotational period of another nine Plutinos. By merging our data with the literature, we estimate that up to similar to 40% of the Plutinos could be contact binaries. Interestingly, we found that all of the suspected contact binaries in the 3:2 resonance are small with absolute magnitude H > 6 mag. Based on our sample and the literature, up to similar to 50% of the small Plutinos are potential contact binaries.
View Full Publication open_in_new
Abstract
Active asteroids behave dynamically like asteroids but display comet-like comae. These objects are poorly understood, with only about 30 identified to date. We have conducted one of the deepest systematic searches for asteroid activity by making use of deep images from the Dark Energy Camera (DECam) ideally suited to the task. We looked for activity indicators among 11,703 unique asteroids extracted from 35,640 images. We detected three previously identified active asteroids ((62412), (1) Ceres and (779) Nina), though only (62412) showed signs of activity. Our activity occurrence rate of 1 in 11,703 is consistent with the prevailing 1 in 10,000 activity occurrence rate estimate. Our proof of concept demonstrates (1) our novel informatics approach can locate active asteroids and (2) DECam data are well-suited to the search for active asteroids.
View Full Publication open_in_new
Abstract
We report observations of the reactivations of the main-belt comets (MBCs) 238P/Read and 288P/(300163) 2006 VW139 that also track the evolution of each object's activity over several months in 2016 and 2017. We additionally identify and analyze archival SDSS data showing 288P to have been active in 2000, meaning that both 238P and 288P have now each been confirmed to be active near perihelion on three separate occasions. From data obtained of 288P from 2012-2015 when it appeared inactive, we find best-fit R-band H, G phase function parameters of H-R = 16.80 +/- 0.12 mag and G(R) = 0.18 +/- 0.11, corresponding to effective component radii of r(c) = 0.80 +/- 0.04 km, assuming a binary system with equally sized components. Fitting linear functions to ejected dust masses inferred for 238P and 288P soon after their observed reactivations in 2016, we find an initial average net dust production rate of M-d = 0.7. 0.3 kg. s(-1) and a best-fit start date of 2016 March 11 (when the object was at a true anomaly of nu = -63 degrees) for 238P, and an initial average net dust production rate of M-d = 5.6. 0.7 kg s(-1) and a best-fit start date of 2016 August 5 (when the object was at nu = -27 degrees) for 288P. Applying similar analyses to archival data, we find similar start points for previous active episodes for both objects, suggesting that minimal mantle growth or ice recession occurred between the active episodes in question. Some changes in dust production rates between active episodes are detected, however. More detailed dust modeling is suggested to further clarify the process of activity evolution in MBCs.
View Full Publication open_in_new
Abstract
We present observations of main-belt comet (MBC) 358P/PANSTARRS (P/2012 T1) obtained using the Gemini South telescope from 2017 July to December, as the object approached perihelion for the first time since its discovery. We find best-fit IAU phase function parameters of H-R = 19.5 +/- 0.2 mag and G(R) = -0.22 +/- 0.13 for the nucleus, corresponding to an effective radius of r(N) 0.32 +/- 0.03 km (assuming an albedo of p(R) 0.05). The object appears significantly brighter (by >= 1 mag) than expected starting in 2017 November, while a faint dust tail oriented approximately in the antisolar direction is also observed on 2017 December 18. We conclude that 358P has become active again for the first time since its previously observed active period in 2012-2013. These observations make 358P the seventh MBC candidate confirmed to exhibit recurrent activity near perihelion with intervening inactivity away from perihelion, strongly indicating that its activity is sublimation-driven. Fitting a linear function to the ejected dust masses inferred for 358P in 2017 when it is apparently active, we find an average net dust production rate of M = 2.0 +/- 0.6 kg s(-1) (assuming a mean effective particle radius of a(d) = 1 mm) and an estimated activity start date of 2017 November 8 +/- 4 when the object was at a true anomaly of v= 316 degrees +/- 1 degrees and a heliocentric distance of R=2.54 au. Insufficient data is currently available to ascertain whether activity strength has changed between the object's 2012-2013 and 2017 active periods. Further observations are therefore highly encouraged during the object's upcoming observing window (2018 August through 2019 May).
View Full Publication open_in_new
Abstract
2013 FY27 is the ninth intrinsically brightest Trans-Neptunian Object (TNO). We used ALMA at thermal wavelengths and Magellan in the optical to determine 2013 FY27's size and albedo for the first time and compare it to other dwarf planets. We found 2013 FY27 has a geometric albedo of p(v) = 0.17(-0.030)(+0.0451) and effective diameter of D = 765(+)(85)(+80)km. This puts 2013 FY27 in the transition region between the largest TNOs that have higher albedos and densities than smaller TNOs. No short-term light curve was found, with variations <0.06 +/- 0.02 mag over hours and days. The Sloan colors of 2013 FY27 are g-r = 0.76 +/- 0.02 and r-i = 0.31 +/- 0.03 mag, giving a moderately red color. This is different than the neutral or ultra-red colors found for the 10 largest TNOs, making 2013 FY27 one of the largest moderately red TNOs, which are only seen, and in abundance, at diameters less than 800 km. This suggests something different might be associated with TNOs larger than 800 km. Moderately red colors might indicate old or ice-poor surfaces with TNOs larger than 800 km having fresher or more volatile-rich surfaces. TNOs larger than 800 km could be more differentiated, giving them different surface compositions. A satellite at 0 '' 17 and 3.0 +/- 0.2 mag fainter than 2013 FY27 was found through Hubble Space Telescope observations. Almost all the largest TNOs have satellites, which now includes 2013 FY27. Assuming a similar albedo, the satellite is similar to 186 km in diameter, making the primary D = 742(-)(83)(+78)km.
View Full Publication open_in_new
Abstract
Inner Oort cloud objects (IOCs) are trans-Plutonian for their entire orbits. They are beyond the strong gravitational influences of the known planets, yet close enough to the Sun that outside forces are minimal. Here we report the discovery of the third known IOC after Sedna and 2012 VP113, called 2015 TG387. This object has a perihelion of 65 +/- 1 au and semimajor axis of 1170 +/- 70 au. The longitude of perihelion angle, (w) over bar, for 2015 TG387 is between that of Sedna and 2012 VP113 and thus similar to the main group of clustered extreme trans-Neptunian objects (ETNOs), which may be shepherded into similar orbital angles by an unknown massive distant planet called Planet X, or Planet Nine. The orbit of 2015 TG387 is stable over the age of the solar system from the known planets and Galactic tide. When including outside stellar encounters over 4 Gyr, 2015 TG387's orbit is usually stable, but its dynamical evolution depends on the stellar encounter scenarios used. Surprisingly, when including a massive Planet X beyond a few hundred au on an eccentric orbit that is antialigned in longitude of perihelion with most of the known ETNOs, we find that 2015 TG387 is typically stable for Planet X orbits that render the other ETNOs stable as well. Notably, 2015 TG387's argument of perihelion is constrained, and its longitude of perihelion librates about 180 degrees from Planet X's longitude of perihelion, keeping 2015 TG387 antialigned with Planet X over the age of the solar system.
View Full Publication open_in_new
Abstract
We present a survey of the rotational and physical properties of the dynamically low inclination Cold Classical (CC) trans-Neptunian objects (TNOs). The CCs are primordial planetesimals and contain information about our solar system and planet formation over the first 100 million years after the Sun's formation. We obtained partial/ complete light curves for 42 CCs. We use statistical tests to derive general properties about the shape and rotational frequency distributions of the CCs and infer that they have slower rotations and are more elongated/deformed than the other TNOs. On the basis of the full light curves, the mean rotational period of the CCs is 9.48 +/- 1.53 hr compared to 8.45 +/- 0.58 hr for the rest of the TNOs. About 65% of the TNOs have a light-curve amplitude below 0.2 mag compared to the 36% of CCs with small amplitude. We present the full light curve of one likely contact binary, 2004 VC131, with a potential density of 1 g cm(-3) for a mass ratio of 0.4. We have hints that 2004 MU8 and 2004 VU75 are perhaps potential contact binaries, on the basis of their sparse light curves, but more data are needed to confirm this finding. Assuming equal-sized binaries, we find that similar to 10%-25% of the CCs could be contact binaries, suggesting a deficit of contact binaries in this population compared to previous estimates and to the (similar to 40%-50%) possible contact binaries in the Plutino population. These estimates are lower limits and may increase if nonequal-sized contact binaries are considered. Finally, we put in context the results of the New Horizons flyby of 2014 MU69.
View Full Publication open_in_new
Abstract
The g'r'i' colors of seven likely and potential contact binaries in the Kuiper Belt were acquired with the Magellan-Baade telescope and combined with colors from the literature to understand contact binary surfaces. The likely and potential contact binaries discovered in the dynamically cold classical population display very red/ultra-red colors. Such colors are common in this sub-population and imply that the cold classical contact binaries were formed in situ. The likely contact binaries found in several mean motion resonances with Neptune have colors from moderately to ultra-red, suggesting different formation regions. Among the nine contact binaries discovered in resonances, five have very red/ultra-red colors and four have moderately red surfaces. Based on the very red/ultra-red colors and low to moderate inclinations of the contact binaries in resonances, these contact binaries are possibly escaped dynamically cold classicals that are now trapped in resonances. Moderately red surfaces are common in diverse sub-populations of the Kuiper Belt, thus pinpointing their origin is difficult though they are most likely captured objects that formed in the giant planet area. Finally, for the contact binary population we report an anti-correlation between inclination and g'-r', as noticed in the rest of this belt. We also find hints of trends between eccentricity, perihelion distance, rotational period, and g'-r', but as we are still dealing with a limited sample, additional data are required to confirm them.
View Full Publication open_in_new
Abstract
On 15 February 2013, the asteroid 367943 Duende (2012 DA14) experienced a near-Earth encounter at an altitude of 27,700 km or 4.2 Earth radii. We present here the results of an extensive, multi-observatory campaign designed to probe for spectral and/or rotational changes to Duende due to gravitational interactions with the Earth during the flyby. Our spectral data reveal no changes within systematic uncertainties. Post-flyby lightcurve photometry places strong constraints on the rotation state of Duende, showing that it is in non-principal axis rotation with fundamental periods of P-1 = 8.71 +/- 0.03 and P-2 = 23.7 +/- 0.2 h. Multiple lightcurve analysis techniques, coupled with theoretical considerations and delay-Doppler radar imaging, allow us to assign these periods to specific rotational axes of the body. In particular we suggest that Duende is now in a non-principal, short axis mode rotation state with a precessional period equal to P-1 and oscillation about the symmetry axis at a rate equal to P-2. Temporal and signal-to-noise limitations inherent to the pre-flyby photometric dataset make it difficult to definitively diagnose whether these periods represent a change imparted due to gravitational torques during the flyby. However, based on multiple analysis techniques and a number of plausibility arguments, we suggest that Duende experienced a rotational change during the planetary encounter with an increase in its precessional rotation period. Our preferred interpretation of the available data is that the precession rate increased from 8.4 h prior to the flyby to 8.7 h afterwards. A companion paper by Benson et al. (2019) provides a more detailed dynamical analysis of this event and compares the data to synthetic lightcurves computed from a simple shape model of Duende. The interpretation and results presented in these two works are consistent with one another. The ultimate outcome of this campaign suggests that the analytic tools we employed are sufficient to extract detailed information about solid-body rotation states given data of high enough quality and temporal sampling. As current and future discovery surveys find more near-Earth asteroids, the opportunities to monitor for physical changes during planetary encounters will increase.
View Full Publication open_in_new
Abstract
The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 521
  • Page 522
  • Page 523
  • Page 524
  • Current page 525
  • Page 526
  • Page 527
  • Page 528
  • Page 529
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025