Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
A search of the Two Micron All Sky Survey (2MASS) and Sloan Digital Sky Survey (SDSS) reveals 36 previously unknown high proper motion objects with J < 17 mag. Their red optical colors indicate that 27 are M dwarfs, eight are early-type L dwarfs, and one is a late-type T dwarf. The L dwarfs have J - K-s colors near the extrema of known L dwarfs, indicating that previous surveys for L dwarfs using color as a selection criterion may be biased. Follow-up near-infrared spectroscopy of six dwarfs confirm that they are all late-type with spectral types ranging from M8 to T4. Spectroscopy also shows that some of the L dwarf spectra exhibit peculiar features similar to other peculiar "blue" L dwarfs, which may indicate that these dwarfs have a relatively condensate free atmosphere or may be metal poor. Photometric distance estimates indicate that 22 of the new M, L, and T dwarfs lie within 100 pc of the Sun with the newly discovered T dwarf, 2MASS J10595185+3042059, located at similar to 25 pc. Based on the colors and proper motions of the newly identified objects, several appear to be good subdwarf candidates. The proper motions of known ultracool dwarfs detected in our survey were also measured, including, for the first time, SDSS J085834.42+325627.6 (T1), SDSS J125011.65+392553.9 (T4), and 2MASS J15261405+2043414 (L7).
View Full Publication open_in_new
Abstract
We present observations of thermal emission from fifteen transneptunian objects (TNOs) made using the Spitzer-Space Telescope. Thirteen of the targets are members of the Classical Population: six dynamically hot Classicals, five dynamically cold Classicals, and two dynamically cold inner Classical Kuiper belt objects (KBOs). We fit out observations using thermal models to determine the sizes and albedos Of Our targets finding that the cold Classical KBOs have distinctly higher Visual albedos than the hot Classicals and other TNO dynamical classes. The cold Classicals Ire known to be distinct from other TNOs in terms of their Color distribution, size distribution, and binarity fraction. The Classical objects in our sample all have Fed colors yet they show a diversity of albedos which suggests that there is not a simple relationship between albedo and color. As a consequence of high albedos, the mass estimate of the cold Classical Kuiper belt is reduced from approximately 0.01 M-circle plus to approximately 0.001 M-circle plus. Our results also increase significantly the sample of small Classical KBOs with known albedos and sizes from 21 to 32 Such objects. (c) 2009 Elsevier Inc. All rights reserved,
View Full Publication open_in_new
Abstract
We present a systematic survey for satellites of Venus using the Baade-Magellan 6.5 m telescope and IMACS wide-field CCD imager at Las Campanas observatory in Chile. In the outer portions of the Hill sphere the search was sensitive to a limiting red magnitude of about 20.4, which corresponds to satellites with radii of a few hundred meters when assuming an albedo of 0.1. In the very inner portions of the Hill sphere scattered light from Venus limited the detection to satellites of about a kilometer or larger. Although several main belt asteroids were found, no satellites (moons) of Venus were detected. (C) 2009 Elsevier Inc. All rights reserved.
View Full Publication open_in_new
Abstract
Extreme outer solar system objects have possible origins beyond the Kuiper Belt edge, high inclinations, very large semimajor axes, or large perihelion distances. Thirty-three such objects were observed in this work to determine their optical colors. All three objects that have been dynamically linked to the inner Oort Cloud by various authors ((90377) Sedna, 2006 SQ(372), and (87269) 2000 OO67) were found to have ultra-red surface material (spectral gradient, S similar to 25). Ultra-red material is generally associated with rich organics and the low inclination "cold" classical Kuiper Belt objects (KBOs). The observations detailed here show that very red material may be a more general feature for objects kept far from the Sun. The recently discovered retrograde outer solar system objects (2008 KV42 and 2008 YB3) and the high inclination object (127546) 2002 XU93 show only moderately red surfaces (S similar to 9) very similar to known comets, suspected dead comets, Jupiter and Neptune Trojans, irregular satellites, D-type asteroids, and damocloids. The extended or detached disk objects, which have large perihelion distances and are thus considered to be detached from the influence of the giant planets but yet have large eccentricities, are found to have mostly moderately red colors (10 less than or similar to S less than or similar to 18). The colors of the detached disk objects, including the dynamically unusual 2004 XR190 and (148209) 2000 CR105, are similar to the scattered disk and Plutino populations. Thus the detached disk, scattered disk, Plutino, and high inclination "hot" classical objects likely have a similar mix of objects from the same source regions. Outer classical KBOs, including (48639) 1995 TL8, were found to have very red surfaces (18 less than or similar to S less than or similar to 30). The low inclination "cold" classical KBOs, outer classical KBOs and possibly the inner Oort Cloud appear to be dominated by ultra-red objects (S greater than or similar to 25) and thus do not likely have a similar mix of objects as the other outer solar system reservoirs such as the scattered disk, detached disk, and Trojan populations. A possible trend was found for the detached disk and outer classical Kuiper Belt in that objects with smaller eccentricities have redder surfaces irrespective of inclinations or perihelion distances. There is also a clear trend that objects more distant appear redder.
View Full Publication open_in_new
Abstract
The Kuiper belt is a collection of small bodies (Kuiper belt objects, KBOs) that lie beyond the orbit of Neptune and which are believed to have formed contemporaneously with the planets. Their small size and great distance make them difficult to study. KBO 55636 (2002 TX300) is a member of the water-ice-rich Haumea KBO collisional family(1). The Haumea family are among the most highly reflective objects in the Solar System. Dynamical calculations indicate that the collision that created KBO 55636 occurred at least 1 Gyr ago(2,3). Here we report observations of a multi-chord stellar occultation by KBO 55636, which occurred on 9 October 2009 UT. We find that it has a mean radius of 143 +/- 65 km (assuming a circular solution). Allowing for possible elliptical shapes, we find a geometric albedo of 0.88(0.06)(+0.15) in the V photometric band, which establishes that KBO 55636 is smaller than previously thought and that, like its parent body, it is highly reflective. The dynamical age implies either that KBO 55636 has an active resurfacing mechanism, or that fresh water-ice in the outer Solar System can persist for gigayear timescales.
View Full Publication open_in_new
Abstract
We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m(R) = 25.7 mag and covered 49 deg(2) of sky. m(R) = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 +/- 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 +/- 10 km (m(R) = 23.5 +/- 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate-and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.
View Full Publication open_in_new
Abstract
We consider the application of interferometry to measuring the sizes and shapes of small bodies in the Solar System that cannot be spatially resolved by today's single-dish telescopes. Assuming ellipsoidal shapes, we provide a formalism to derive the shape parameters from visibility measurements along three different baseline orientations. Our results indicate that interferometers can measure the size of an object to better than 15% uncertainty if the limb-darkening is unknown. Assuming a Minnaert scattering model, one can theoretically derive the limb-darkening parameters from simultaneous measurements of visibilities at several different projected baseline lengths to improve the size and shape determination to an accuracy of a few percent. The best size measurement can be reached when one axis of the object's projected disk is aligned with one baseline orientation, and the measurement of cross-sectional area is independent of baseline orientation. We construct a 3-D shape model for the dwarf planet Haumea and use it to synthesize interferometric data sets. Using the Haumea model, we demonstrate that when photometric light curve, visibility light curve, and visibility phase center displacement are combined, the rotational period and sense of rotation can all be derived, and the rotational pole can be estimated. Because of its elongated shape and the dark red spot, the rotation of Haumea causes its optical photocenter to move in a loop on the sky. Our simulations show that this loop has an extend of about 80 mu as without the dark red spot, and about 200 mu as with it. Such movements are easily detectable by space-based astrometric interferometer designed e.g. for planet detection. As an example, we consider the possible contributions to the study of small bodies in the Solar System by the Space Interferometry Mission. We show that such a mission could make substantial contributions in characterizing the fundamental physical properties of the brightest Kuiper Belt Objects and Centaurs as well as a large number of main belt asteroids. We compile a list of Kuiper Belt Objects and Centaurs that are potentially scientifically interesting and observable by such missions. (C) 2010 Elsevier Inc. All rights reserved.
View Full Publication open_in_new
Abstract
We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of similar to 3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE7 to the Haumea collisional family based on our water ice band observations (J - H2O = -1.03 +/- 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 +/- 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.
View Full Publication open_in_new
Abstract
In 2009, we used the Subaru telescope to observe all the faint irregular satellites of Neptune for the first time since 2004. These observations extend the data arcs for Halimede, Psamathe, Sao, Laomedeia, and Neso from a few years to nearly a decade. We also report on a search for unknown Neptune satellites in a half-square degree of sky and a limiting magnitude of 26.2 in the R band. No new satellites of Neptune were found. We numerically integrate the orbits for the five irregulars and summarize the results of the orbital fits in terms of the state vectors, post-fit residuals, and mean orbital elements. Sao and Neso are confirmed to be Kozai librators, while Psamathe is a "reverse circulator." Halimede and Laomedeia do not seem to experience any strong resonant effects.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 520
  • Page 521
  • Page 522
  • Page 523
  • Current page 524
  • Page 525
  • Page 526
  • Page 527
  • Page 528
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026