Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

    Lava exoplanet
    Seminar

    Caleb Lammers (Princeton)

    Gaia’s Exoplanet Potential

    February 6

    12:15pm PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We present observations of thermal emission from fifteen transneptunian objects (TNOs) made using the Spitzer-Space Telescope. Thirteen of the targets are members of the Classical Population: six dynamically hot Classicals, five dynamically cold Classicals, and two dynamically cold inner Classical Kuiper belt objects (KBOs). We fit out observations using thermal models to determine the sizes and albedos Of Our targets finding that the cold Classical KBOs have distinctly higher Visual albedos than the hot Classicals and other TNO dynamical classes. The cold Classicals Ire known to be distinct from other TNOs in terms of their Color distribution, size distribution, and binarity fraction. The Classical objects in our sample all have Fed colors yet they show a diversity of albedos which suggests that there is not a simple relationship between albedo and color. As a consequence of high albedos, the mass estimate of the cold Classical Kuiper belt is reduced from approximately 0.01 M-circle plus to approximately 0.001 M-circle plus. Our results also increase significantly the sample of small Classical KBOs with known albedos and sizes from 21 to 32 Such objects. (c) 2009 Elsevier Inc. All rights reserved,
View Full Publication open_in_new
Abstract
We present a systematic survey for satellites of Venus using the Baade-Magellan 6.5 m telescope and IMACS wide-field CCD imager at Las Campanas observatory in Chile. In the outer portions of the Hill sphere the search was sensitive to a limiting red magnitude of about 20.4, which corresponds to satellites with radii of a few hundred meters when assuming an albedo of 0.1. In the very inner portions of the Hill sphere scattered light from Venus limited the detection to satellites of about a kilometer or larger. Although several main belt asteroids were found, no satellites (moons) of Venus were detected. (C) 2009 Elsevier Inc. All rights reserved.
View Full Publication open_in_new
Abstract
The Kuiper belt is a collection of small bodies (Kuiper belt objects, KBOs) that lie beyond the orbit of Neptune and which are believed to have formed contemporaneously with the planets. Their small size and great distance make them difficult to study. KBO 55636 (2002 TX300) is a member of the water-ice-rich Haumea KBO collisional family(1). The Haumea family are among the most highly reflective objects in the Solar System. Dynamical calculations indicate that the collision that created KBO 55636 occurred at least 1 Gyr ago(2,3). Here we report observations of a multi-chord stellar occultation by KBO 55636, which occurred on 9 October 2009 UT. We find that it has a mean radius of 143 +/- 65 km (assuming a circular solution). Allowing for possible elliptical shapes, we find a geometric albedo of 0.88(0.06)(+0.15) in the V photometric band, which establishes that KBO 55636 is smaller than previously thought and that, like its parent body, it is highly reflective. The dynamical age implies either that KBO 55636 has an active resurfacing mechanism, or that fresh water-ice in the outer Solar System can persist for gigayear timescales.
View Full Publication open_in_new
Abstract
The structural behavior of Al3+ in peralkaline glasses and melts along the Na2Si3O7-Na-2(NaAl)(3)O-7 join has been examined to 1200degreesC at ambient pressure with Si-29 MAS NMR and Raman spectroscopy. The distribution of Al3+ among coexisting Q(4), Q(3), and Q(2) structural units in the glasses and melts was determined as a function of bulk Al/(Al+Si) and temperature. The Al3+ resides principally in Q(4) structural units, which contain more than 70% of the total amount of Al3+. The Q(2) units contain the smallest amount of Al3+ among the Q(4), Q(3), and Q(2) structural units. There is no evidence for temperature-dependent distribution of Al3+ among the coexisting structural units at least to 1100-1200degreesC.
View Full Publication open_in_new
Abstract
Cation ordering in covalent oxide glasses and melts profoundly affects the macroscopic properties, such as viscosity, diffusivity, and thermodynamic potentials. It is commonly assumed that in glasses and melts nonframework cations such as Na+, Ca2+, and Ba2+ distribute randomly around nonbridging oxygen (NBO). Several macroscopic studies on the melting of silicates and thermodynamic data have suggested that a possible nonrandomness may exist among cations around NBO in mixed-cation silicate glasses. Here, we report unambiguous experimental evidence of chemical ordering of nonframework cations and demonstrate a clear preference for certain types of cation-NBO complexes in mixed-cation silicate glasses using O-17 magic angle spinning (MAS) and multiple quantum MAS NMR. Particularly, complete bonding preference and cation ordering occurs in Ba-Mg silicate glasses (BaMgSi2O6) glass in such a way that nonbridging oxygen either only has Ba2+ as a nearest neighbor (Ba-NBO) or exists as a complex containing one Ba+ and two Mg2+ as nearest neighbors while no detectable fraction of Mg-NBO is observed. Ba-Na silicate glasses, on the other hand, show a wide distribution of configurations for two types of cations around NBO, forming Ba- and Na-NBO as well as substantial intensity of mixed NBO peaks, which indicates a prevalence of dissimilar pairs around NBO or a stronger preference to Ba-O-Si-[4] over Na-O-Si-[4]. The present results, combined with the previous results on Na-Ca silicate glasses, highlight the tendency for chemical ordering upon cation mixing in oxide glasses and may provide an atomistic explanation for diffusivity anomalies as well as activity-composition relationship of silicate melts.
View Full Publication open_in_new
Abstract
Structural interaction between dissolved fluorine and silicate glass (25degreesC) and melt (to 1400degreesC) has been examined with F-19 and Si-29 MAS NMR and with Raman spectroscopy in the system Na2O-Al2O3-SiO2 as a function of Al2O3 content. Approximately 3 mol.% F calculated as NaF dissolved in these glasses and melts. From F-19 NMR spectroscopy, four different fluoride complexes were identified. These are (1) Na-F complexes (NF), (2) Na-Al-F complexes with Al in 4-fold coordination (NAF), (3) Na-Al-F complexes with Al in 6-fold coordination with F (CF), and (4) Al-F complexes with Al in 6-fold, and possibly also 4-fold coordination (TF). The latter three types of complexes may be linked to the aluminosilicate network via Al-O-Si bridges.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 510
  • Page 511
  • Page 512
  • Page 513
  • Current page 514
  • Page 515
  • Page 516
  • Page 517
  • Page 518
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026