Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Context. The study of star formation is extremely challenging, due to the lack of complete and clean samples of young nearby clusters and star-forming regions. The recent Gaia DR2 catalogue complemented with the deep ground-based COSMIC DANCe catalogue o ffers a new database of unprecedented accuracy to revisit the membership of clusters and star-forming regions. The 30 Myr open cluster IC 4665 is one of the few well-known clusters of this age and it is an excellent target where evolutionary models can be tested and planetary formation studied.
View Full Publication open_in_new
Abstract
Atmospheric studies of spectroscopically accessible terrestrial exoplanets lay the groundwork for comparative planetology between these worlds and the solar system terrestrial planets. LHS 3844b is a highly irradiated terrestrial exoplanet (R = 1.303 0.022R(circle plus)) orbiting a mid-M dwarf 15 parsecs away. Work based on near-infrared Spitzer phase curves ruled out atmospheres with surface pressures >= 10 bars on this planet. We present 13 transit observations of LHS 3844b taken with the Magellan Clay telescope and the LDSS3C multi-object spectrograph covering 620-1020 nm. We analyze each of the 13 data sets individually using a Gaussian process regression, and present both white and spectroscopic light curves. In the combined white light curve we achieve an rms precision of 65 ppm when binning to 10 minutes. The mean white light-curve value of (R-p/R-s)(2)is 0.4170 0.0046%. To construct the transmission spectrum, we split the white light curves into 20 spectrophotometric bands, each spanning 20 nm, and compute the mean values of (R-p/R-s)(2)in each band. We compare the transmission spectrum to two sets of atmospheric models. We disfavor a clear, solar composition atmosphere (mu = 2.34) with surface pressures >= 0.1 bar to 5.2 sigma confidence. We disfavor a clear, H2O steam atmosphere (mu = 18) with surface pressures >= 0.1 bar to low confidence (2.9 sigma). Our observed transmission spectrum favors a flat line. For solar composition atmospheres with surface pressures >= 1 bar we rule out clouds with cloud-top pressures of 0.1 bar (5.3 sigma), but we cannot address high-altitude clouds at lower pressures. Our results add further evidence that LHS 3844b is devoid of an atmosphere.
View Full Publication open_in_new
Abstract
Two sources of variability are reported in extreme horizontal branch (EHB) stars found in globular clusters, both related to the action of weak magnetic fields: large surface spots and very energetic flares. EHB stars in clusters can thus be linked to EHB field stars, and beyond, to other stars with radiative envelopes.
View Full Publication open_in_new
Reading
April 21, 2022
Campus News

15 Inspiring Science Books to Add to Your Summer Reading List

Abstract
The establishment and maintenance of the symbiosis between a cnidarian host and its dinoflagellate symbionts is central to the success of coral reefs. To explore the metabolite production underlying this symbiosis, we focused on a group of low molecular weight secondary metabolites, biogenic volatile organic compounds (BVOCs). BVOCs are released from an organism or environment, and can be collected in the gas phase, allowing non-invasive analysis of an organism's metabolism (i.e. 'volatilomics'). We characterised volatile profiles of the sea anemone Aiptasia (Exaiptasia diaphana), a model system for cnidarian-dinoflagellate symbiosis, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. We compared volatile profiles between: (1) symbiotic anemones containing their native symbiont, Breviolum minutum; (2) aposymbiotic anemones; and (3) cultured isolates of B. minutum. Overall, 152 BVOCs were detected, and classified into 14 groups based on their chemical structure, the most numerous groups being alkanes and aromatic compounds. A total of 53 BVOCs were differentially abundant between aposymbiotic anemones and B. minutum cultures; 13 between aposymbiotic and symbiotic anemones; and 60 between symbiotic anemones and cultures of B. minutum. More BVOCs were differentially abundant between cultured and symbiotic dinoflagellates than between aposymbiotic and symbiotic anemones, suggesting that symbiosis may modify symbiont physiology more than host physiology. This is the first volatilome analysis of the Aiptasia model system and provides a foundation from which to explore how BVOC production is perturbed under environmental stress, and ultimately the role they play in this important symbiosis.
View Full Publication open_in_new
Abstract
The Sloan Digital Sky Survey V (SDSS-V) is an all-sky spectroscopic survey of >6 million objects, designed to decode the history of the Milky Way, reveal the inner workings of stars, investigate the origin of solar systems, and track the growth of supermassive black holes across the Universe. The Local Volume Mapper (LVM) is a facility designed to provide a contiguous 2,500 deg(2) integral-field survey over a 3.5 year period from Las Campanas Observatory in Chile. In this paper we provide an overview and status update for the LVM instrument (hereafter LVM-I). Each integral-field unit's spaxel probes linear scales that are sub-parsec (Milky Way) to similar to 10 pc (Magellanic Clouds) which is accomplished with an angular diameter of 36.9". LVM's spectral resolution is R = lambda/Delta lambda similar to 4, 000 which probes velocities of 33 kms(-1) (1 sigma) from 365 nm to 950 nm. LVM uses four 16-cm telescopes feeding three spectrographs. One telescope carries the bulk of the science load with similar to 1,800 fibers coupled to the field via a pair of lenslet arrays, two telescopes are used to measure the night sky spectra in fields that flank the science field, and a fourth telescope contemporaneously monitors bright standard stars to determine atmospheric extinction. We expect LVM-I to deliver percent-level precision on important line ratios down to a few Rayleigh. The three spectrographs are being built by Winlight corporation in France based on those for the Dark Energy Spectroscopic Instrument (DESI). In this paper we present the high-level system design of LVM-I including the lenslet-coupled fiber IFUs, telescopes, guiding+acquisition system, calibration systems, enclosures, and spectrographs.
View Full Publication open_in_new
Abstract
The Sloan Digital Sky Survey V (SDSS-V) is an all-sky spectroscopic survey of >6 million objects, designed to decode the history of the Milky Way, reveal the inner workings of stars, investigate the origin of solar systems, and track the growth of supermassive black holes across the Universe. The Local Volume Mapper (LVM) is a facility designed to provide a contiguous 2500 deg 2 integral-field survey over a 3.5 year period from Las Campailas Observatory (LCO) in Chile. The facility comprises four small (16 cm) telescopes that deliver science, calibration, and spectro-photometric light to three bench-mounted multi-object spectrographs, designed and build by Winlight Systems. All four telescopes will be equipped with a microlens array integral-field unit (IFU) to slice the focal plane into 35-arcsec large spatial elements while maintaining near-telecentric coupling at the fiber input. The science IFU comprises 1801 fibers, additional 143 fibers are allocated for sky-background and spectro-photometric calibration, totaling 1944 fibers. Each spectrograph will be fed by 648 fibers, which are reformatted into a linear array, forming the entrance slit. In this paper, we present the opto-mechanical design of the LVM-LCO fiber cable system.
View Full Publication open_in_new
Abstract
This paper presents a systematic study of the photoionization and thermodynamic properties of the cool circumgalactic medium (CGM) as traced by rest-frame ultraviolet absorption lines around 26 galaxies at redshift z less than or similar to 1. The study utilizes both high-quality far-ultraviolet and optical spectra of background QSOs and deep galaxy redshift surveys to characterize the gas density, temperature, and pressure of individual absorbing components and to resolve their internal non-thermal motions. The derived gas density spans more than three decades, from log(n(H)/cm(-3)) approximate to -4 to -1, while the temperature of the gas is confined in a narrow range of log (T/K) approximate to 4.3 +/- 0.3. In addition, a weak anticorrelation between gas density and temperature is observed, consistent with the expectation of the gas being in photoionization equilibrium. Furthermore, decomposing the observed line widths into thermal and non-thermal contributions reveals that more than 30 per cent of the components at z less than or similar to 1 exhibit line widths driven by non-thermal motions, in comparison to <20 per cent found at z approximate to 2-3. Attributing the observed non-thermal line widths to intra-clump turbulence, we find that massive quenched galaxies on average exhibit higher non-thermal broadening/turbulent energy in their CGM compared to star-forming galaxies at z less than or similar to 1. Finally, strong absorption features from multiple ions covering a wide range of ionization energy (e.g. from Mg II to O IV) can be present simultaneously in a single absorption system with kinematically aligned component structure, but the inferred pressure in different phases may differ by a factor of approximate to 10.
View Full Publication open_in_new
Abstract
In the hierarchical view of star formation, giant molecular clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1 '') PHANGS-ALMA catalogue of GMCs with the star cluster catalogues from PHANGS-HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4 - 6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (<= 10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the > 10 Myr stellar populations, indicating that the hierarchical structure dissolves over time.
View Full Publication open_in_new
Abstract
The chromatin associated with the nuclear lamina (NL) is referred to as lamina-associated domains (LADs). Here, we present an adaptation of the tyramide-signal amplification sequencing (TSA-seq) protocol, which we call chromatin pull down-based TSA-seq (cTSA-seq), that can be used to map chromatin regions at or near the NL from as little as 50 000 cells. The cTSA-seq mapped regions are composed of previously defined LADs and smaller chromatin regions that fall within the Hi-C defined B-compartment containing nuclear peripheral heterochromatin. We used cTSA-seq to map chromatin at or near the assembling NL in cultured cells progressing through early G1. cTSA-seq revealed that the distal ends of chromosomes are near or at the reassembling NL during early G1, a feature similar to those found in senescent cells. We expand the use of cTSA-seq to the mapping of chromatin at or near the NL from fixed-frozen mouse cerebellar tissue sections. This mapping reveals a general conservation of NL-associated chromatin and identifies global and local changes during cerebellar development. The cTSA-seq method reported here is useful for analyzing chromatin at or near the NL from small numbers of cells derived from both in vitro and in vivo sources.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 427
  • Page 428
  • Page 429
  • Page 430
  • Current page 431
  • Page 432
  • Page 433
  • Page 434
  • Page 435
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025