Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Featured Staff Member

    Gwen Rudie

    Dr. Gwen Rudie

    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Learn More
    Observatory Staff
    Dr. Gwen Rudie
    Staff Scientist, Director of the Carnegie Astrophysics Summer Student Internship (CASSI)

    Gwen Rudie specializes in observational studies of distant galaxies and the diffuse gas which surrounds them—the circumgalactic medium.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Solar telescopes at the Carnegie Science Observatories annual Open House
    Public Program

    City of Astronomy Week 2025

    Carnegie Astronomers

    November 16

    12:00pm PST

    Caleb Sharf NLS - A Giant Leap
    Public Program

    The Giant Leap

    Dr. Caleb Scharf

    November 6

    6:30pm EST

    Two people look at each other
    Public Program

    Face Value: How the Brain Shapes Human Connection

    Nancy Kanwisher

    October 29

    6:30pm EDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    This artist’s concept shows what the ultra-hot super-Earth exoplanet TOI-561 b could look like based on observations from NASA’s James Webb Space Telescope and other observatories. Webb data suggests that the planet is surrounded by a thick atmosphere above a global magma ocean. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)
    Breaking News
    December 10, 2025

    Ultra-hot lava world has thick atmosphere, upending expectations

    Carnegie Observatories Santa Barbara Street campus.
    Breaking News
    December 04, 2025

    Carnegie Science Names Michael Blanton 12th Observatories Director

    Profile photo of Dr. Stella Ocker
    Breaking News
    November 24, 2025

    Postdoc Spotlight: Stella Ocker Explores the Space Between the Stars

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
New and existing X-ray, UBVJHK(s)W((1-4)), and spectroscopic observations were analyzed to constrain fundamental parameters for M25, NGC 7790, and dust along their sight-lines. The star clusters are of particular importance because they host the classical Cepheids USgr, CF Cas, and the visual binary Cepheids CEa and CEb Cas. Precise results from the multiband analysis, in tandem with a comprehensive determination of the Cepheids' period evolution (dP/dt) from similar to 140 years of observations, helped to resolve concerns raised regarding the clusters and their key Cepheid constituents. Specifically, the distances derived for members of M25 and NGC7790 are 630 +/- 25 pc and 3.40 +/- 0.15 kpc, respectively.
View Full Publication open_in_new
Abstract
Using FORS2 on the Very Large Telescope, we have astrometrically monitored over a period of two months the two components of the brown dwarf system WISE J104915.57-531906.1, the closest one to the Sun. Our astrometric measurements - with a relative precision at the milli-arcsecond scale - allowed us to detect the orbital motion and derive more precisely the parallax of the system, leading to a distance of 2.020 +/- 0.019 pc. The relative orbital motion of the two objects is found to be perturbed, which leads us to suspect the presence of a substellar companion around one of the two components. We also performed VRIz photometry of the two components and compared this with models. We confirm the flux reversal of the T dwarf.
View Full Publication open_in_new
Abstract
We present a new Y dwarf, WISE J030449.03-270508.3, confirmed from a candidate sample designed to pick out low-temperature objects from the Wide-field Infrared Survey Explorer (WISE) data base. The new object is typed Y0pec following a visual comparison with spectral standards, and lies at a likely distance of 10-17 pc. Its tangential velocity suggests thin disc membership, but it shows some spectral characteristics that suggest that it may be metal poor and/or older than previously identified Y0 dwarfs. Based on trends seen for warmer late-type T dwarfs, the Y-band flux peak morphology is indicative of sub-solar metallicity, and the enhanced red wing of the J-band flux peak offers evidence for high gravity and/or low metallicity (with associated model trends suggesting an age closer to similar to 10 Gyr and mass in the range 0.02-0.03 M-circle dot). This object may thus be extending the population parameter space of the known Y0 dwarfs.
View Full Publication open_in_new
Abstract
Recent ground-based near-IR (NIR) studies of stellar clusters in nearby galaxies have suggested that young clusters remain embedded for 7-10 Myr in their progenitor molecular cloud, in conflict with optical-based studies which find that clusters are exposed after 1-3 Myr. Here, we investigate the role that spatial resolution plays in this apparent conflict. We use a recent catalogue of young (< 10 Myr) massive (> 5000M(circle dot)) clusters in the nearby spiral galaxy, M83, along with Hubble Space Telescope (HST) imaging in the optical and NIR, and ground-based NIR imaging, to see how the colours (and hence estimated properties such as age and extinction) are affected by the aperture size employed, in order to simulate studies of differing resolution. We find that the NIR is heavily affected by the resolution, and when aperture sizes > 40 pc are used, all young/blue clusters move redwards in colour space, which results in their appearance as heavily extincted clusters. However, this is due to contamination from nearby sources and nebular emission, and is not an extinction effect. Optical colours are much less affected by resolution. Due to the larger effect of contamination in the NIR, we find that, in some cases, clusters will appear to show NIR excess when large (> 20 pc) apertures are used. Our results explain why few young (< 6 Myr), low-extinction (AV < 1 mag) clusters have been found in recent ground-based NIR studies of cluster populations, while many such clusters have been found in higher resolution HST-based studies. Additionally, resolution effects appear to (at least partially) explain the origin of the NIR excess that has been found in a number of extragalactic young massive clusters.
View Full Publication open_in_new
Abstract
Context. The abundances of a-elements are a powerful diagnostic of the star formation history and chemical evolution of a galaxy. Sulphur. being moderately volatile, can be reliably measured in the interstellar medium (ISM) of damped Ly-alpha galaxies and extragalactic H-II regions. Measurements in stars of different metallicity in our Galaxy can then be readily compared to the abundances in external galaxies. Such a comparison is not possible for Si or Ca that suffer depletion onto dust in the ISM. Furthermore, studying sulphur is interesting because it probes nucleosynthetic conditions that are very different from those of Oar Mg. In this context measurements in star clusters are a reliable tracers of the Galactic evolution of sulphur.
View Full Publication open_in_new
Abstract
Passing stars can perturb the Oort Cloud, triggering comet showers and potentially extinction events on Earth. We combine velocity measurements for the recently discovered, nearby, low- mass binary system WISE J072003.20084651.2 (" Scholz's star") to calculate its past trajectory. Integrating the Galactic orbits of this 0.15 Me binary system and the Sun, we find that the binary passed within only 52+ 23 - 14 kAU ( 0.25+ 0.11 - 0.07 pc) of the Sun 70+ 15 - 10 kya ( 1s uncertainties), i. e., within the outer Oort Cloud. This is the closest known encounter of a star to our solar system with a well- constrained distance and velocity. Previous work suggests that flybys within 0.25 pc occur infrequently ( 0.1 Myr- 1). We show that given the low mass and high velocity of the binary system, the encounter was dynamically weak. Using the best available astrometry, our simulations suggest that the probability that the star penetrated the outer Oort Cloud is 98%, but the probability of penetrating the dynamically active inner Oort Cloud (< 20 kAU) is 10- 4. While the flyby of this system likely caused negligible impact on the flux of longperiod comets, the recent discovery of this binary highlights that dynamically important Oort Cloud perturbers may be lurking among nearby stars.
View Full Publication open_in_new
Abstract
Context. The severe crowding towards the Galactic plane suggests that the census of nearby stars in that direction may be incomplete. Recently, Scholz reported a new M9 object at an estimated distance d similar or equal to 7 pc (WISE J072003.20-084651.2; hereafter WISE J0720) at Galactic latitude b = 2.3 degrees.
View Full Publication open_in_new
Abstract
So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered(1-8). Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M-circle dot)(2,6,7,9-13). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies(14). Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough(15) on the blue side of the Lyman-alpha emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities(16). We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of similar to 1.2 x 10(10) M-circle dot, which is consistent with the 1.3 x 10(10) M-circle dot derived by assuming an Eddington-limited accretion rate.
View Full Publication open_in_new
Abstract
We describe the new spectroscopic data reduction pipeline for the multi-object MMT/Magellan Infrared Spectrograph. The pipeline is implemented in IDL as a stand-alone package and is publicly available in both stable and development versions. We describe novel algorithms for sky subtraction and correction for telluric absorption. We demonstrate that our sky subtraction technique reaches the Poisson limit set by the photon statistics. Our telluric correction uses a hybrid approach by first computing a correction function from an observed stellar spectrum, and then differentially correcting it using a grid of atmosphere transmission models for the target airmass value. The pipeline provides a sufficient level of performance for real time reduction and thus enables data quality control during observations. We reduce an example dataset to demonstrate the high data reduction quality.
View Full Publication open_in_new
Abstract
We report the discovery of a substellar companion to 2MASS J02192210-3925225, a young M6. candidate member of the Tucana-Horologium association (30-40 Myr). This L4 gamma companion has been discovered with seeing-limited direct imaging observations; at a 4 '' separation (160 AU) and a modest contrast ratio, it joins the very short list of young low-mass companions amenable to study without the aid of adaptive optics, enabling its characterization with a much wider suite of instruments than is possible for companions uncovered by highcontrast imaging surveys. With a model-dependent mass of 12-15 M-Jup, it straddles the boundary between the planet and brown dwarf mass regimes. We present near-infrared spectroscopy of this companion and compare it to various similar objects uncovered in the last few years. The J0219-3925 system falls in a sparsely populated part of the host mass versus mass ratio diagram for binaries; the dearth of known similar companions may be due to observational biases in previous low-mass companion searches.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 425
  • Page 426
  • Page 427
  • Page 428
  • Current page 429
  • Page 430
  • Page 431
  • Page 432
  • Page 433
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025