Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Our Blueprint For Discovery
      • Board & Advisory Committee
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie
      • Back
      • Applications Open: Postdoctoral Fellowships

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Featured Staff Member

    Johanna Test Portrait

    Dr. Johanna Teske

    Staff Scientist

    Learn More
    Observatory Staff
    Dr. Johanna Teske
    Staff Scientist

    Johanna Teske's research focuses on quantifying the diversity of exoplanet compositions and understanding the origin of that diversity.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    Lava exoplanet
    Seminar

    Katelyn Horstman (Caltech)

    Searching for exo-satellites and brown dwarf binaries using the Keck Planet Imager and Characterizer (KPIC)

    January 30

    12:15pm PST

    Colloquium

    Dr. Ken Shen (UC Berkeley)

    A paradigm shift in the landscape of Type Ia supernova progenitors

    February 3

    11:00am PST

    Fire image
    Seminar

    The carbon balance of fiery ecosystems: unpacking the role of soils, disturbances and climate solutions

    Adam Pellegrini

    February 4

    11:00am PST

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Latest

    • - Any -
    • Biosphere Sciences & Engineering
    • Carnegie Administration
    • Earth & Planets Laboratory
    • Observatories
    expand_more
    Read all News
    Pulsing xenia with clownfish
    Breaking News
    January 29, 2026

    Carnegie Science Celebrates Second Annual Carnegie Science Day

    An illustration of cataloging exoplanet diversity courtesy of NASA
    Breaking News
    January 28, 2026

    A cornucopia of distant worlds

    Dark background with an illuminated coral
    Breaking News
    January 27, 2026

    It’s the microbe’s world; we’re just living in it

  • Resources
    • Back
    • Resources
    • Search All
      • Back
      • Employee Resources
      • Scientific Resources
      • Postdoc Resources
      • Media Resources
      • Archival Resources
    • Quick Links
      • Back
      • Employee Intranet
      • Dayforce
      • Careers
      • Observing at LCO
      • Locations and Addresses
  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Carnegie Champions
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
The most massive galaxies in the universe are also the oldest. To overturn this apparent contradiction with hierarchical growth models we focus on the group-scale halos that host most of these galaxies. Our z similar to 0.4 group sample is selected in redshift space from the CNOC2 redshift survey. A stellar mass-selected M* greater than or similar to 2 x 10(10) M-circle dot sample is constructed using IRAC observations. A sensitive mid-infrared (MIR) IRAC color is used to isolate passive galaxies. It produces a bimodal distribution, in which passive galaxies (highlighted by morphological early types) define a tight MIR color sequence (infrared passive sequence, IPS). This is due to stellar atmospheric emission from old stellar populations. Significantly offset from the IPS are galaxies where reemission by dust boosts emission at lambda(obs) 8 mu m. We term them infrared excess galaxies, whether star formation and/or AGN activity are present. They include all known morphological late types. Comparison with EW[O II] shows that MIR color is highly sensitive to low levels of activity and allows us to separate dusty active from passive galaxies at high stellar mass. The fraction of infrared excess galaxies, f (IRE), drops with M*, such that f (IRE) 0.5 at a "crossover mass" of M-cr similar to 1.3 x 10(11) M-circle dot. Within our optically defined group sample there is a strong and consistent deficit in f (IRE) at all masses, but most clearly at M-* greater than or similar to 10(11) M-circle dot. Suppression of star formation must mainly occur in groups. In particular, the observed trend of f (IRE) with M* can be explained if suppression of M* greater than or similar to 10(11) M-circle dot galaxies occurs primarily in the group environment. This is confirmed using a mock galaxy catalog derived from the millenium simulation. In this way, the mass-dependent evolution in f (IRE) (downsizing) can be driven solely by structure growth in the universe, as more galaxies are accreted into group-sized halos with cosmic time.
View Full Publication open_in_new
Abstract
We present results from a systematic investigation of the X-ray properties of a sample of moderate-redshift (0.3 < z < 0.6) galaxy groups. These groups were selected not by traditional X-ray or optical search methods, but rather by an association, either physical or along the line of sight, with a strong gravitational lens. We calculate the properties of seven galaxy groups in the fields of six lens systems. Diffuse X-ray emission from the intragroup medium is detected in four of the groups. All of the detected groups have X-ray luminosities greater than 10(42) h(-2) ergs s(-1) and lie on the LX-sigma(v) relations defined by local groups and clusters. The upper limits for the nondetections are also consistent with the local LX-sigma(v) relationships. Although the sample size is small and deeper optical and X-ray data are needed, these results suggest that lens-selected groups are similar to X-ray-selected samples and thus are more massive than the typical poor-group environments of local galaxies.
View Full Publication open_in_new
Abstract
We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disc-dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z = 0.4 groups have similar to 5.5 +/- 2 per cent fewer disc-dominated galaxies than the field, while by z = 0.1 this difference has increased to similar to 19 +/- 6 per cent. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disc population. At both redshifts, the discs of group galaxies have similar scaling relations and show similar median asymmetries as the discs of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge-dominated galaxies is 6 +/- 3 per cent higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z = 0.4 and 0 using the semi-analytic galaxy catalogues of Bower et al. This model accurately reproduces the B/T distributions of the group and field at z = 0.1. However, the model does not reproduce our finding that the deficit of discs in groups has increased significantly since z = 0.4.
View Full Publication open_in_new
Abstract
Using deep Chandra and optical spectroscopic observations, we investigate an intriguing young massive group, RX J1648.7+6109, at z = 0.376, and we combine these observations with previous measurements to fit the scaling relations of intermediate-redshift groups and poor clusters. RX J1648 appears to be in an early stage of formation; while it follows X-ray scaling relations, its X-ray emission is highly elongated, and it lacks a central, dominant BCG. Instead, RX J1648 contains a central string of seven bright galaxies, which have a smaller velocity dispersion, are on average brighter, and have less star formation [lower EW([O II]) and EW(H delta)] than other group galaxies. The four to five brightest galaxies in this string should sink to the center and merge through dynamical friction by z = 0, forming a BCG consistent with a system of RX J1648's mass even if 5%-50% of the light is lost to an intracluster light component. The L-X-T-X relation for intermediate-redshift groups/poor clusters is very similar to the low-redshift cluster relation and consistent with the low-redshift group relation. In contrast, the L-X-sigma(nu) and sigma(nu)-T-X relations reveal that intermediate-redshift groups/poor clusters have significantly lower velocity dispersions for their X-ray properties compared to low-redshift systems; however, the intermediate-redshift relations are currently limited to a small range in luminosity.
View Full Publication open_in_new
Abstract
The detection and characterization of the afterglow emission and host galaxies of short-hard gamma-ray bursts (SHBs) is one of the most exciting recent astronomical discoveries. In particular, indications that SHB progenitors belong to old stellar populations, in contrast to the long-soft GRBs, provide a strong clue about the physical nature of these systems. Definitive conclusions are currently limited by the small number of SHBs with known hosts available for study. Here, we present our investigation of SHBs previously localized by the interplanetary network (IPN). We show that the brightest galaxy within the error box of SHB 000607, at z = 0.1405, is the probable host galaxy of this event, expanding the sample of SHBs with known hosts and distances. We find a spatial association of the bright SHB 790613 and the cataloged position of the rich galaxy cluster Abell 1892. However, we are unable to verify the reality of this cluster via spectroscopy or multicolor imaging, and we conclude that this association may well be spurious. In addition, we rule out the existence of galaxy overdensities (down to approximate to 21 mag, i.e., approximate to 0.1 L-* at z-0.2) near the locations of two other SHBs and set a lower limit on their probable redshift. We combine our SHB sample with a complete sample of events discovered by the Swift and HETE-2 missions and investigate the properties of the extended sample. We show that the progenitors of SHBs appear to be older than those of Type Ia SNe, on average, suggesting a typical lifetime of several Gyr. The low typical redshift of SHBs leads to a significant increase in the local SHB rate and bodes well for the detection of gravitational radiation from these events, should they result from compact binary mergers, with forthcoming facilities.
View Full Publication open_in_new
Abstract
The low-redshift universe (z similar to 0.5) is not a dull place. Processes leading to the suppression of star formation and morphological transformation are prevalent: this is particularly evident in the dramatic upturn in the fraction of S0-type galaxies in clusters. However, until now, the process and environment of formation remained unidentified. We present a morphological analysis of galaxies in the optically-selected (spectroscopic friends-of-friends) group and field environments at z similar to 0.4. Groups contain a much higher fraction of S0s at fixed luminosity than the lower density field, with >99.999% confidence. Indeed, the S0 fraction in groups is at least as high as in z similar to 0.4 clusters and X-ray-selected groups, which have more luminous intragroup medium (IGM). An excess of S0s at >= 0.3h(75)(-1) Mpc from the group center with respect to the inner regions, existing with 97% confidence at fixed luminosity, tells us that formation is not restricted to, and possibly even avoids, the group cores. Interactions with a bright X-ray-emitting IGM cannot be important for the formation of the majority of S0s in the universe. In contrast to S0s, the fraction of elliptical galaxies in groups at fixed luminosity is similar to the field, while the brightest ellipticals are strongly enhanced toward the group centers (greater than 99.999% confidence within >= 0.3h(75)(-1) Mpc). Interestingly, while spirals are altogether less common in groups than in the field, there is also an excess of faint, Sc+ type spirals within >= 0.3h(75)(-1) Mpc of the group centers (99.953% confidence). We conclude that the group and subgroup environments must be dominant for the formation of S0 galaxies, and that minor mergers, galaxy harassment, and tidal interactions are the most likely responsible mechanisms. This has implications not only for the inferred preprocessing of cluster galaxies, but also for the global morphological and star formation budget of galaxies: as hierarchical clustering progresses, more galaxies will be subject to these transformations as they enter the group environment.
View Full Publication open_in_new
Abstract
We present an imaging and spectroscopic survey of galaxies in fields around QSOs HE 0226-4110, PKS 0405-123, and PG 1216+069. The fields are selected to have ultraviolet echelle spectra available, which uncover 195 Ly alpha absorbers and 13 O VI absorbers along the three sightlines. We obtain robust redshifts for 1104 galaxies of rest-frame absolute magnitude M-R - 5 log h less than or similar to - 16 and at projected physical distances. rho less than or similar to 4 h(-1) Mpc from the QSOs. Hubble Space Telescope (HST)/WFPC2 images of the fields around PKS 0405-123 and PG 1216+069 are available for studying the optical morphologies of absorbing galaxies. Combining the absorber and galaxy data, we perform a cross-correlation study to understand the physical origin of Lya and O VI absorbers and to constrain the properties of extended gas around galaxies. The results of our study are: (1) both strong Ly alpha absorbers of log N(H I) >= 14 and O VI absorbers exhibit a comparable clustering amplitude as emission-line-dominated galaxies and a factor of approximate to 6 weaker amplitude than absorption-line-dominated galaxies on comoving projected distance scales of r(p) < 3 h(-1) Mpc; (2) weak Ly alpha absorbers of log N(H I) < 13.5 appear to cluster very weakly around galaxies; (3) none of the absorption-line-dominated galaxies at r(p) <= 250 h(-1) kpc has a corresponding O VI absorber to a sensitive upper limit of W(1031) less than or similar to 0.03 angstrom, while the covering fraction of O VI absorbing gas around emission-line-dominated galaxies is found to be kappa approximate to 64%; and (4) high-resolution images of five O VI absorbing galaxies show that these galaxies exhibit disk-like morphologies with mildly disturbed features on the edge. Together, the data indicate that O VI absorbers arise preferentially in gas-rich galaxies. In addition, tidal debris in groups/galaxy pairs may be principally responsible for the observed O VI absorbers, particularly those of W(1031) > 70 m angstrom.
View Full Publication open_in_new
Abstract
We present new optical and near-infrared imaging for a sample of 98 spectroscopically selected galaxy groups at 0.25 < z < 0.55, most of which have velocity dispersions Sigma < 500 km s(-1). We use point spread function matched aperture photometry to measure accurate colours for group members and the surrounding field population. The sample is statistically complete above a stellar mass limit of approximately M = 1 x 10(10) M(circle dot). The overall colour distribution is bimodal in both the field and group samples; but, at fixed luminosity the fraction of group galaxies populating the red peak is larger, by similar to 20 +/- 7 per cent, than that of the field. In particular, group members with early-type morphologies, as identified in Hubble Space Telescope imaging, exhibit a tight red sequence, similar to that seen for more massive clusters. Using optical and near-infrared colours, including data from the Spitzer Space Telescope, we show that approximately 20-30 per cent of galaxies on the red sequence may be dust-reddened galaxies with non-negligible star formation and early-spiral morphologies. This is true of both the field and group samples, and shows little dependence on near-infrared luminosity. Thus, the fraction of bright ((0.4)M(K) < -22) group members with no sign of star formation or active galactic nuclei activity, as identified by their colours or [O ii] emission, is 54 +/- 6 per cent. Our field sample, which includes galaxies in all environments, contains 35 +/- 3 per cent of such inactive galaxies, consistent with the amount expected if all such galaxies are located in groups and clusters. This reinforces our earlier conclusions that dense environments at z less than or similar to 0.5 are associated with a premature cessation of star formation in some galaxies; in particular, we find no evidence for significantly enhanced star formation in these environments. Simple galaxy formation models predict a quenching of star formation in groups that is too efficient, overpopulating the red sequence. Attempts to fix this by increasing the time-scale of this quenching equally for all group members distort the colour distribution in a way that is inconsistent with observations.
View Full Publication open_in_new
Abstract
X-ray properties of galaxy groups can unlock some of the most challenging research topics in modern extragalactic astronomy: the growth of structure and its influence on galaxy formation. Only with the advent of the Chandra and XMM-Newton facilities have X-ray observations reached the depths required to address these questions in a satisfactory manner. Here we present an X-ray imaging study of two patches from the CNOC2 spectroscopic galaxy survey using combined Chandra and XMM-Newton data. A state of the art extended source finding algorithm has been applied, and the resultant source catalog, including redshifts from a spectroscopic follow-up program, is presented. The total number of spectroscopically identified groups is 25 spanning a redshift range 0.04-0.79. Approximately 50% of CNOC2 spectroscopically selected groups in the deeper X-ray ( RA14h) field are likely X-ray detections, compared to 20% in the shallower ( RA21h) field. Statistical modeling shows that this is consistent with expectations, assuming an expected evolution of the LX-M relation. A significant detection of a stacked shear signal for both spectroscopic and X-ray groups indicates that both samples contain real groups of about the expected mass. We conclude that the current area and depth of X-ray and spectroscopic facilities provide a unique window of opportunity at z similar to 0.4 to test the X-ray appearance of galaxy groups selected in various ways. There is at present no evidence that the correlation between X-ray luminosity and velocity dispersion evolves significantly with redshift, which implies that catalogs based on either method can be fairly compared and modeled.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 422
  • Page 423
  • Page 424
  • Page 425
  • Current page 426
  • Page 427
  • Page 428
  • Page 429
  • Page 430
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Our Research Areas
  • Our Blueprint For Discovery

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Administrative & Support Jobs
  • Postdoctoral Program
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2026