Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    News and updates from across Carnegie Science.
    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We have performed a systematic search for X-ray cavities in the hot gas of 51 galaxy groups with Chandra archival data. The cavities are identified based on two methods: subtracting an elliptical beta-model fitted to the X-ray surface brightness, and performing unsharp masking. Thirteen groups in the sample (similar to 25%) are identified as clearly containing cavities, with another 13 systems showing tentative evidence for such structures. We find tight correlations between the radial and tangential radii of the cavities, and between their size and projected distance from the group center, in quantitative agreement with the case for more massive clusters. This suggests that similar physical processes are responsible for cavity evolution and disruption in systems covering a large range in total mass. We see no clear association between the detection of cavities and the current 1.4 GHz radio luminosity of the central brightest group galaxy, but there is a clear tendency for systems with a cool core to be more likely to harbor detectable cavities. To test the efficiency of the adopted cavity detection procedures, we employ a set of mock images designed to mimic typical Chandra data of our sample, and find that the model-fitting approach is generally more reliable than unsharp masking for recovering cavity properties. Finally, we find that the detectability of cavities is strongly influenced by a few factors, particularly the signal-to-noise ratio of the data, and that the real fraction of X-ray groups with prominent cavities could be substantially larger than the 25%-50% suggested by our analysis.
View Full Publication open_in_new
Abstract
We present the first mid-IR study of galaxy groups in the nearby universe based on Spitzer MIPS observations of a sample of nine redshift-selected groups from the XMM-IMACS project, at z = 0.06. We find that on average the star-forming (SF) galaxy fraction in the groups is about 30% lower than the value in the field and 30% higher than in clusters. The SF fractions do not show any systematic dependence on group velocity dispersion, total stellar mass, or the presence of an X-ray emitting intragroup medium, but a weak anti-correlation is seen between SF fraction and projected galaxy density. However, even in the densest regions, the SF fraction in groups is still higher than that in cluster outskirts, suggesting that preprocessing of galaxies in group environments is not sufficient to explain the much lower SF fraction in clusters. The typical specific star formation rates (SFRs/M(*)) of SF galaxies in groups are similar to those in the field across a wide range of stellar mass (M(*) > 10(9.6) M(circle dot)), favoring a quickly acting mechanism that suppresses star formation to explain the overall smaller fraction of SF galaxies in groups. If galaxy -galaxy interactions are responsible, then the extremely low starburst galaxy fraction (<1%) implies a short timescale (similar to 0.1 Gyr) for any merger-induced starburst stage. Comparison to two rich clusters shows that clusters contain a population of massive SF galaxies with very low SFR (14% of all the galaxies with M(*) > 10(10) M(circle dot)), possibly as a consequence of ram pressure stripping being less efficient in removing gas frommoremassive galaxies.
View Full Publication open_in_new
Abstract
We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L(X)-L(K) relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L(K) less than or similar to L(star) suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L(K) less than or similar to L(star) galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.
View Full Publication open_in_new
Abstract
We examine the star formation properties of group and field galaxies in two surveys, Sloan Digital Sky Survey (at z similar to 0.08) and Group Environment Evolution Collaboration (GEEC; at z similar to 0.4). Using ultraviolet imaging from the Galaxy Evolution Explorer space telescope, along with optical and, for GEEC, near-infrared photometry, we compare the observed spectral energy distributions to large suites of stellar population synthesis models. This allows us to accurately determine star formation rates and stellar masses. We find that star-forming galaxies of all environments undergo a systematic lowering of their star formation rate between z = 0.4 and 0.08 regardless of mass. None the less, the fraction of passive galaxies is higher in groups than the field at both redshifts. Moreover, the difference between the group and field grows with time and is mass dependent, in the sense the difference is larger at low masses. However, the star formation properties of star-forming galaxies, as measured by their average specific star formation rates, are consistent within the errors in the group and field environment at fixed redshift. The evolution of passive fraction in groups between z = 0.4 and 0 is consistent with a simple accretion model, in which galaxies are environmentally affected 3 Gyr after falling into a similar to 1013 M-circle dot group. This long time-scale appears to be inconsistent with the need to transform galaxies quickly enough to ensure that star-forming galaxies appear similar in both the group and field, as observed.
View Full Publication open_in_new
Abstract
Galaxy star formation rates (SFRs) are sensitive to the local environment; for example, the high-density regions at the cores of dense clusters are known to suppress star formation. It has been suggested that galaxy transformation occurs largely in groups, which are the intermediate step in density between field and cluster environments. In this paper, we use deep MIPS 24 mu m observations of intermediate-redshift (0.3 less than or similar to z less than or similar to 0.55) group and field galaxies from the Group Environment and Evolution Collaboration (GEEC) subset of the Second Canadian Network for Observational Cosmology (CNOC2) survey to probe the moderate-density environment of groups, wherein the majority of galaxies are found. The completeness limit of our study is log(L-TIR(L-circle dot)) greater than or similar to 10.5, corresponding to SFR greater than or similar to 2.7 M-circle dot yr(-1). We find that the group and field galaxies have different distributions of morphologies and mass. However, individual group galaxies have star-forming properties comparable to those of field galaxies of similar mass and morphology; that is, the group environment does not appear to modify the properties of these galaxies directly. There is a relatively large number of massive early-type group spirals, along with E/S0 galaxies, that are forming stars above our detection limit. These galaxies account for the nearly comparable level of star-forming activity in groups as compared with the field, despite the differences in mass and morphology distributions between the two environments. The distribution of specific SFRs (SFR/M-*) is shifted to lower values in the groups, reflecting the fact that groups contain a higher proportion of massive and less active galaxies. Considering the distributions of morphology, mass, and SFR, the group members appear to lie between field and cluster galaxies in overall properties.
View Full Publication open_in_new
Abstract
The presence of substructure in galaxy groups and clusters is believed to be a sign of recent galaxy accretion and can be used to probe not only the assembly history of these structures, but also the evolution of their member galaxies. Using the DresslerShectman (DS) test, we study substructure in a sample of intermediate-redshift (z similar to 0.4) galaxy groups from the Group Environment and Evolution Collaboration (GEEC) group catalogue. We find that four of the 15 rich GEEC groups, with an average velocity dispersion of similar to 525 km s-1, are identified as having significant substructure. The identified regions of localized substructure lie on the group outskirts and in some cases appear to be infalling. In a comparison of galaxy properties for the members of groups with and without substructure, we find that the groups with substructure have a significantly higher fraction of blue and star-forming galaxies and a parent colour distribution that resembles that of the field population rather than the overall group population. In addition, we observe correlations between the detection of substructure and other dynamical measures, such as velocity distributions and velocity dispersion profiles. Based on this analysis, we conclude that some galaxy groups contain significant substructure and that these groups have properties and galaxy populations that differ from groups with no detected substructure. These results indicate that the substructure galaxies, which lie preferentially on the group outskirts and could be infalling, do not exhibit signs of environmental effects, since little or no star formation quenching is observed in these systems.
View Full Publication open_in_new
Abstract
We present the global group properties of two samples of galaxy groups containing 39 high-quality X-ray-selected systems and 38 optically (spectroscopically) selected systems in coincident spatial regions at 0.12 < z < 0.79. The total mass range of the combined sample is similar to(10(12)-5) x 10(14) M-circle dot. Only nine optical systems are associable with X-ray systems. We discuss the confusion inherent in the matching of both galaxies to extended X-ray emission and of X-ray emission to already identified optical systems. Extensive spectroscopy has been obtained and the resultant redshift catalog and group membership are provided here. X-ray, dynamical, and total stellar masses of the groups are also derived and presented. We explore the effects of utilizing different centers and applying three different kinds of radial cut to our systems: a constant cut of 1 Mpc and two r(200) cuts, one based on the velocity dispersion of the system and the other on the X-ray emission. We find that an X-ray-based r(200) results in less scatter in scaling relations and less dynamical complexity as evidenced by results of the Anderson-Darling and Dressler-Schectman tests, indicating that this radius tends to isolate the virialized part of the system. The constant and velocity dispersion based cuts can overestimate membership and can work to inflate velocity dispersion and dynamical and stellar mass. We find L-X-sigma and M-stellar-L-X scaling relations for X-ray and optically selected systems are not dissimilar. The mean fraction of mass found in stars, excluding intracluster light, for our systems is similar to 0.014 with a logarithmic standard deviation of 0.398 dex. We also define and investigate a sample of groups which are X-ray underluminous given the total group stellar mass. For these systems the fraction of stellar mass contributed by the most massive galaxy is typically lower than that found for the total population of groups implying that there may be less intragroup medium contributed from the most massive member in these systems. Eighty percent of 15 underluminous groups have less than 40% of their stellar mass in the most massive galaxy which happens in less than 1% of cases with samples matched in stellar mass, taken from the combined group catalog.
View Full Publication open_in_new
Abstract
We report the discovery of an X-ray group of galaxies located at a high redshift of z = 1.61 in the Chandra Deep Field South. Based on 4 Ms Chandra data, the group is first identified as an extended X-ray source. We have used a wealth of deep multi-wavelength data to identify the optical counterpart-our red sequence finder detects a significant over-density of galaxies at z similar to 1.6. The brightest group galaxy is spectroscopically confirmed at z = 1.61, based on published spectroscopic redshifts. Using this as a central redshift of the group, we measure an X-ray luminosity of L0.1-2.4keV = (1.8 +/- 0.6) x 10(43) erg s(-1), which then translates into a group mass of (3.2 +/- 0.8) x 10(13) M-circle dot. This is the lowest-mass group ever confirmed at z > 1.5. Deep optical-nearIR images from CANDELS reveal that the group exhibits a surprisingly prominent red sequence, and most of the galaxies are consistent with a formation redshift of z(f) = 3. A detailed analysis of the spectral energy distributions of the group member candidates confirms that most of them are indeed passive galaxies. Furthermore, their structural parameters measured from near-IR CANDELS images show that they are morphologically early-type. The newly identified group at z = 1.61 is dominated by quiescent early-type galaxies, and the group appears to be similar to those in the local Universe. One possible difference is the high fraction of AGN-38(-20)(+23)% of the bright group member candidates are AGN, which might indicate a role for AGN in the quenching of star formation. However, a statistical sample of high-z groups is needed to draw a general picture of groups at this redshift. Such a sample will hopefully be available in near-future surveys.
View Full Publication open_in_new
Abstract
We present deep Gemini Multi-Object Spectrograph-South spectroscopy for 11 galaxy groups at 0.8 < z < 1.0, for galaxies with r(AB) < 24.75. Our sample is highly complete (> 66 per cent) for eight of the 11 groups. Using an optical-near-infrared colour-colour diagram, the galaxies in the sample were separated with a dust insensitive method into three categories: passive (red), star-forming (blue) and intermediate (green). The strongest environmental dependence is observed in the fraction of passive galaxies, which make up only similar to 20 per cent of the field in the mass range 10(10.3) < M-star/M-circle dot < 10(11.0), but are the dominant component of groups. If we assume that the properties of the field are similar to those of the 'pre-accreted' population, the environment quenching efficiency (is an element of(rho)) is defined as the fraction of field galaxies required to be quenched in order to match the observed red fraction inside groups. The efficiency obtained is similar to 0.4, similar to its value in intermediate-density environments locally. While green (intermediate) galaxies represent similar to 20 per cent of the star-forming population in both the group and field, at all stellar masses, the average specific star formation rate of the group population is lower by a factor of similar to 3. The green population does not show strong H delta absorption that is characteristic of starburst galaxies. Finally, the high fraction of passive galaxies in groups, when combined with satellite accretion models, require that most accreted galaxies have been affected by their environment. Thus, any delay between accretion and the onset of truncation of star formation (tau) must be <= 2 Gyr, shorter than the 3-7 Gyr required to fit data at z = 0. The relatively small fraction of intermediate galaxies require that the actual quenching process occurs quickly, with an exponential decay time-scale of tau(q) <= 1Gyr.
View Full Publication open_in_new
Abstract
We report the discovery of the optical afterglow of the gamma-ray burst (GRB) 130702A, identified upon searching 71 deg(2) surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt gamma-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for similar to 10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 422
  • Page 423
  • Page 424
  • Page 425
  • Current page 426
  • Page 427
  • Page 428
  • Page 429
  • Page 430
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025