Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We analyze the standardizability of Type Ia supernovae (SNe Ia) in the near-infrared (NIR) by investigating the correlation between observed peak NIR (Y JH) absolute magnitude and postmaximum B-band decline rate [Delta m(15)(B)]. A sample of 27 low-redshift SNe Ia with well-observed NIR light curves observed by the Carnegie Supernova Project (CSP) between 2004 and 2007 is used. All 27 objects have premaximum coverage in optical bands, with a subset of 13 having premaximum NIR observations as well; coverage of the other 14 begins shortly after NIR maximum brightness. We describe the methods used to derive light-curve parameters (absolute peak magnitudes and decline rates) from both spline-and template-fitting procedures, and we confirm prior findings that fitting templates to SNe Ia light curves in the NIR is problematic due to the diversity of postmaximum behavior of objects that are characterized by similar Delta m(15)(B) values, especially at high decline rates. Nevertheless, we show that NIR light curves can be reasonably fit with a template, especially if the observations begin within 5 days after NIR maximum. SNe Ia appear to be better "standardizable candles" in the NIR bands than in the optical bands. For the subset of 13 objects in our data set that excludes the highly reddened and fast-declining SNe Ia and includes only those objects for which NIR observations began prior to 5 days after maximum light, we find modest (1.7 sigma) evidence for a peak-luminosity versus decline-rate relation in Y, and stronger evidence (2.8 sigma) in J and H. Using R-V values differing from the canonical value (R-V = 3.1) is shown to have little effect on the results. A Hubble diagram is presented for the NIR bands and the B band. The resulting scatter for the combined NIR bands is 0.13 mag, while the B band produces a scatter of 0.22 mag. Finally, we find evidence for a bimodal distribution in the NIR absolute magnitudes of fast-declining SNe Ia [Delta m(15)(B) > 1.7]. These data suggest that applying a correction to SNe Ia peak luminosities for decline rate is likely to be beneficial in the J and H bands to make SNe Ia more precise distance indicators, but of only marginal importance in the Y band.
View Full Publication open_in_new
Abstract
The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at approximate to 6300 angstrom which is attributed to C II lambda 6580. An alternative identification of this absorption as Ha is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 angstrom absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely approximate to 1000 km s(-1) above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10(-3) to 10(-2) M-circle dot. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for objects which show carbon.
View Full Publication open_in_new
Abstract
Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.
View Full Publication open_in_new
Abstract
Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 mu m with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 mu m data for 10 high-metallicity, Milky Way Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6 mu m data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8. We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H-0, also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H-0 over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H-0 = 74.3 with a systematic uncertainty of +/- 2.1 (systematic) km s(-1) Mpc(-1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7 measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(0) = -1.08 +/- 0.10 and a value of N-eff = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.
View Full Publication open_in_new
Abstract
In this paper we use near-infrared (NIR) spectral observations of Type Ia supernovae (SNe Ia) to study the uncertainties inherent in NIR K corrections. To do so, 75 previously published NIR spectra of 33 SNe Ia are employed to determine K-correction uncertainties in the YJHK(s) passbands as a function of temporal phase and redshift. The resultant K corrections are then fed into an interpolation algorithm that provides mean K corrections as a function of temporal phase and robust estimates of the associated errors. These uncertainties are both statistical and intrinsic-i.e., due to the diversity of spectral features from object to object and must be included in the overall error budget of cosmological parameters constrained through the use of NIR observations of SNe Ia. Intrinsic variations are likely the dominant source of error for all four passbands at maximum light. Given the present data, the total Y-band K-correction uncertainties at maximum are smallest, amounting to +/- 0.04 mag at a redshift of z = 0.08. The J-band K-term errors are also reasonably small (+/- 0.06 mag), but intrinsic variations of spectral features and noise introduced by telluric corrections in the H-band currently limit its total K-correction errors at maximum to +/- 0.10 mag at z = 0.08. Finally, uncertainties in the K-s-band K terms at maximum amount to +/- 0.07 mag at this same redshift. These results are largely constrained by the small number of published NIR spectra of SNe Ia, which do not yet allow spectral templates to be constructed as a function of the light curve decline rate.
View Full Publication open_in_new
Abstract
We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of "normal" SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B - V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R-V, though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R-V, and the color excess, E(B - V), such that larger E(B - V) tends to favor lower R-V. The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R-V or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.
View Full Publication open_in_new
Abstract
A comprehensive set of optical and near-infrared (NIR) photometry and spectroscopy is presented for the faint and fast 2008ha-like supernova (SN) 2010ae. Contingent on the adopted value of host extinction, SN 2010ae reached a peak brightness of -13.8 > M-V > -15.3 mag, while modeling of the UVOIR light curve suggests it produced 0.003-0.007 M-circle dot of Ni-56, ejected 0.30-0.60 M-circle dot of material, and had an explosion energy of 0.04-0.30 x 10(51) erg. The values of these explosion parameters are similar to the peculiar SN 2008ha -for which we also present previously unpublished early phase optical and NIR light curves - and places these two transients at the faint end of the 2002cx-like SN population. Detailed inspection of the post-maximum NIR spectroscopic sequence indicates the presence of a multitude of spectral features, which are identified through SYNAPPS modeling to be mainly attributed to Co II. Comparison with a collection of published and unpublished NIR spectra of other 2002cx-like SNe, reveals that a Co II footprint is ubiquitous to this subclass of transients, providing a link to Type Ia SNe. A visual-wavelength spectrum of SN 2010ae obtained at +252 days past maximum shows a striking resemblance to a similar epoch spectrum of SN 2002cx. However, subtle differences in the strength and ratio of calcium emission features, as well as diversity among similar epoch spectra of other 2002cx-like SNe indicates a range of physical conditions of the ejecta, highlighting the heterogeneous nature of this peculiar class of transients.
View Full Publication open_in_new
Abstract
We present photospheric-phase observations of LSQ12gdj, a slowly declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude M-B = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23 800 angstrom) light curve out to 45 d past B-band maximum light. We estimate that LSQ12gdj produced 0.96 +/- 0.07 M-circle dot of Ni-56, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27 per cent of the flux at the earliest observed phases, and 17 per cent at maximum light, is emitted bluewards of 3300 angstrom. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 angstrom and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, similar to 10 per cent of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius < 10(13) cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.
View Full Publication open_in_new
Abstract
We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and 23 NIR spectra were obtained from 10 days before (-10d) to 10 days after (+10d) the time of maximum B-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify C I lambda 1.0693 in the NIR spectra. Mg II lines with high oscillator strengths have higher initial velocities than other Mg II lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show that it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for OI, Mg II, Si II, S Ca a, and Fell suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from -10d to +29d, in the UBVRIJH and K-s bands. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using R-v = 1.46, which is consistent with previous studies, SNooPy finds that A(v) = 1.80 for E(B - V)(host) = 1.23 +/- 0.06 mag. The maximum B-band brightness of -19.19 +/- 0.10 mag was reached on February 1.74 UT +/- 0.13 days and the supernova has a decline parameter, Delta m(15), of 1.12 +/- 0.02 mag.
View Full Publication open_in_new
Abstract
We present ultraviolet through near-infrared (NIR) broadband photometry, and visual-wavelength and NIR spectroscopy of the Type lax supernova (SN) 2012Z. The data set consists of both early- and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopically classified SN lax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced similar to 0.3 M-circle dot of Ni-56, ejected about a Chandrasekhar mass of material, and had an explosion energy of similar to 10(51) erg, making it one of the brightest (M-B = -18.3 mag) and most energetic SN Iax yet observed. The late phase (+269d) NIR spectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially from all supernova types. Constraints from the distribution of intermediate mass elements, e.g., silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the Ni-56 is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of Ni-56 during the deflagration burning phase and little (or no) Ni-56 during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the intermediate mass elements is a product of the subsequent denotation phase. The fact that the SNe lax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of Ni-56 production during the early subsonic phase of expansion.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 387
  • Page 388
  • Page 389
  • Page 390
  • Current page 391
  • Page 392
  • Page 393
  • Page 394
  • Page 395
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025