Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    People sit on the shore at sunset.
    Workshop

    Seventh Workshop on Trait-based Approaches to Ocean Life

    Pacific Grove, CA

    August 4

    9:00pm PDT

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    brian-yurasits-EQlwRGr5sqk-unsplash.jpg
    Seminar

    Microenvironmental ecology and symbiosis

    Dr. Michael Kühl

    May 14

    11:00am PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    Vera Rubin at Carnegie Science’s former Department of Terrestrial Magnetism, now part of the Earth and Planets Laboratory, in 1972 usi
    Breaking News
    June 18, 2025

    10 Iconic Photographs of Vera Rubin

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Breaking News
    June 17, 2025

    Inside Mercury: What Experimental Geophysics Is Revealing About Our Strangest Planet

    Vera Rubin at Lowell Observatory, 69-inch [i.e., 72-inch] Telescope (Kent Ford in white helmet)
    Breaking News
    June 17, 2025

    Things Named After Carnegie Astronomer Vera Rubin

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
We provide the largest and most homogeneous sample of alpha-element (Mg, Ca, Ti) and iron abundances for field RR Lyrae (RRLs; 162 variables) by using high-resolution spectra. The current measurements were complemented with similar abundances available in the literature for 46 field RRLs brought to our metallicity scale. We ended up with a sample of old (t >= 10 Gyr), low-mass stellar tracers (208 RRLs: 169 fundamental, 38 first overtone, and 1 mixed mode) covering 3 dex in iron abundance (-3.00 <= [Fe/H] <= 0.24). We found that field RRLs are similar to 0.3 dex more alpha poor than typical halo tracers in the metal-rich regime ([Fe/H] >= -1.2), while in the metal-poor regime ([Fe/H] <= -2.2) they seem to be on average similar to 0.1 dex more alpha enhanced. This is the first time that the depletion in alpha elements for solar iron abundances is detected on the basis of a large, homogeneous, and coeval sample of old stellar tracers. Interestingly, we also detected a close similarity in the [alpha/Fe] trend between alpha-poor, metal-rich RRLs and red giants (RGs) in the Sagittarius dwarf galaxy as well as between alpha-enhanced, metal-poor RRLs and RGs in ultrafaint dwarf galaxies. These results are supported by similar elemental abundances for 46 field horizontal branch stars. These stars share with RRLs the same evolutionary phase and the same progenitors. This evidence further supports the key role that old stellar tracers play in constraining the early chemical enrichment of the halo and, in particular, in investigating the impact that dwarf galaxies have had in the mass assembly of the Galaxy.
View Full Publication open_in_new
Abstract
We collected the largest spectroscopic catalog of RR Lyrae (RRLs) including approximate to 20,000 high-, medium-, and low-resolution spectra for approximate to 10,000 RRLs. We provide the analytical forms of radial velocity curve (RVC) templates. These were built using 36 RRLs (31 fundamental-split into three period bins-and five first-overtone pulsators) with well-sampled RVCs based on three groups of metallic lines (Fe, Mg, Na) and four Balmer lines (H- alpha , H- beta , H- gamma , H- delta ). We tackled the long-standing problem of the reference epoch to anchor light-curve and RVC templates. For the V-band, we found that the residuals of the templates anchored to the phase of the mean magnitude along the rising branch are similar to 35% to similar to 45% smaller than those anchored to the phase of maximum light. For the RVC, we used two independent reference epochs for metallic and Balmer lines and we verified that the residuals of the RVC templates anchored to the phase of mean RV are from 30% (metallic lines) up to 45% (Balmer lines) smaller than those anchored to the phase of minimum RV. We validated our RVC templates by using both the single-point and the three phase point approaches. We found that barycentric velocities based on our RVC templates are two to three times more accurate than those available in the literature. We applied the current RVC templates to Balmer lines RVs of RRLs in the globular NGC 3201 collected with MUSE at VLT. We found the cluster barycentric RV of V ( gamma ) = 496.89 +/- 8.37(error) +/- 3.43 (standard deviation) km s(-1), which agrees well with literature estimates.
View Full Publication open_in_new
Abstract
We present extensive u'g'r'i'BVRIYJHK(s) photometry and optical spectroscopy of the Type Ia supernova ( SN) 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called "the most peculiar known Type Ia supernova." Both supernovae exhibited high-ionization SN 1991T-like premaximum spectra, yet low peak luminosities like that of SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical Type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal Type Ia supernovae. Our YJH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from similar to 15 days before to similar to 60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a three-dimensional deflagration that produces similar to 0.2 M-circle dot of Ni-56.
View Full Publication open_in_new
Abstract
A detailed study spanning approximately a year has been conducted on the Type Ib supernova (SN) 2007Y. Imaging was obtained from X-ray to radio wavelengths, and a comprehensive set of multi-band (w2m2w1u'g'r'i'UBVYJHK(s)) light curves and optical spectroscopy is presented. A virtually complete bolometric light curve is derived, from which we infer a Ni-56 mass of 0.06 M-circle dot. The early spectrum strongly resembles SN 2005bf and exhibits high- velocity features of Ca II and H alpha; during late epochs the spectrum shows evidence of an ejecta-wind interaction. Nebular emission lines have similar widths and exhibit profiles that indicate a lack of major asymmetry in the ejecta. Late phase spectra are modeled with a non-LTE code, from which we find Ni-56, O, and total-ejecta masses (excluding He) to be 0.06, 0.2, and 0.42 M-circle dot, respectively, below 4500 km s(-1). The Ni-56 mass confirms results obtained from the bolometric light curve. The oxygen abundance suggests that the progenitor was most likely a approximate to 3.3 M-circle dot He core star that evolved from a zero-age-main-sequence mass of 10-13 M-circle dot. The explosion energy is determined to be approximate to 10(50) erg, and the mass-loss rate of the progenitor is constrained from X-ray and radio observations to be less than or similar to 10(-6) M-circle dot yr(-1). SN 2007Y is among the least energetic normal Type Ib SNe ever studied.
View Full Publication open_in_new
Abstract
Aims. We study a thermonuclear supernova (SN), emphasizing very late phases.
View Full Publication open_in_new
Abstract
An analysis of the first set of low-redshift (z < 0.08) Type Ia supernovae (SNe Ia) monitored by the Carnegie Supernova Project between 2004 and 2006 is presented. The data consist of well-sampled, high-precision optical (ugriBV) and near-infrared (NIR; YJHK(s)) light curves in a well-understood photometric system. Methods are described for deriving light-curve parameters, and for building template light curves which are used to fit SN Ia data in the ugriBVYJH bands. The intrinsic colors at maximum light are calibrated using a subsample of supernovae (SNe) assumed to have suffered little or no reddening, enabling color excesses to be estimated for the full sample. The optical-NIR color excesses allow the properties of the reddening law in the host galaxies to be studied. A low average value of the total-to-selective absorption coefficient, R(V) approximate to 1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe (SN 2005A and SN 2006X) in the sample are excluded, a value R(V) approximate to 3.2 is obtained, similar to the standard value for the Galaxy. The red colors of these two events are well matched by a model where multiple scattering of photons by circumstellar dust steepens the effective extinction law. The absolute peak magnitudes of the SNe are studied in all bands using a two-parameter linear fit to the decline rates and the colors at maximum light, or alternatively, the color excesses. In both cases, similar results are obtained with dispersions in absolute magnitudes of 0.12-0.16 mag, depending on the specific filter-color combination. In contrast to the results obtained from the comparison of the color excesses, these fits of absolute magnitude give R(V) approximate to 1-2 when the dispersion is minimized, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the "normal" interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram for the best-observed subsample of SNe is produced by combining the results of the fits of absolute magnitude versus decline rate and color excess for each filter. The resulting scatter of 0.12 mag appears to be limited by the peculiar velocities of the host galaxies as evidenced by the strong correlation between the distance-modulus residuals observed in the individual filters. The implication is that the actual precision of SNe Ia distances is 3%-4%.
View Full Publication open_in_new
Abstract
The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of similar to 100 low-redshift Type Ia supernovae (SNe Ia) in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 SNe Ia, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (YJHK(s)) data points in the natural system of the Swope telescope. Twenty-eight SNe have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate data sets of low-redshift SNe Ia published to date. When completed, the CSP data set will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of SNe Ia.
View Full Publication open_in_new
Abstract
The giant elliptical galaxy NGC 1316 (Fornax A) is a well-studied member of the Fornax Cluster and a prolific producer of Type Ia supernovae (SNe Ia), having hosted four observed events since 1980. Here, we present detailed optical-and near-infrared light curves of the spectroscopically normal SN 2006dd. These data are used, along with previously published photometry of the normal SN 1980N and SN 1981D, and the fast-declining, low-luminosity SN 2006mr, to compute independent estimates of the host reddening for each SN, and the distance to NGC 1316. From the three normal SNe, we find a distance of 17.8 +/- 0.3 (random) +/- 0.3 (systematic) Mpc for H-o = 72. Distance moduli derived from the "EBV" and Tripp methods give the values that are mutually consistent with 4%-8%. Moreover, the weighted means of the distance moduli for these three SNe for three methods agree to within 3%. This consistency is encouraging and supports the premise that Type Ia SNe are reliable distance indicators at the 5% precision level or better. On the other hand, the two methods used to estimate the distance of the fast-declining SN 2006mr both yield a distance to NGC 1316 which is 25%-30% larger. This disparity casts doubt on the suitability of fast-declining events for estimating extragalactic distances. Modest-to-negligible host galaxy reddening values are derived for all four SNe. Nevertheless, two of them (SN 2006dd and SN 2006mr) show strong Na I D interstellar lines in the host galaxy system. The strength of this absorption is completely inconsistent with the small reddening values derived from the SN light curves if the gas in NGC 1316 is typical of that found in the interstellar medium of the Milky Way. In addition, the equivalent width of the Na lines in SN 2006dd appears to have weakened significantly some 100-150 days after explosion.
View Full Publication open_in_new
Abstract
In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.
View Full Publication open_in_new
Abstract
The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of similar to 100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of similar to 1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.
View Full Publication open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 386
  • Page 387
  • Page 388
  • Page 389
  • Current page 390
  • Page 391
  • Page 392
  • Page 393
  • Page 394
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025