Skip to main content
Home

Navigation Menu

  • Back
  • About
    • Back
    • About

      Contact Us

      Business Address
      5241 Broad Branch Rd. NW

      Washington , DC 20015
      United States place Map
      Call Us (202) 387-640
    • Who We Are
      • Back
      • Leadership
      • Board & Advisory Committee
      • Initiatives
      • Financial Stewardship
      • Awards & Accolades
      • History
    • Connect with Us
      • Back
      • Outreach & Education
      • Newsletter
      • Yearbook
    • Working at Carnegie

    Contact Us

    Business Address
    5241 Broad Branch Rd. NW

    Washington , DC 20015
    United States place Map
    Call Us (202) 387-6400
  • Research
    • Back
    • Research Areas & Topics
    • Research Areas & Topics
      • Back
      • Research Areas
      • From genomes to ecosystems and from planets to the cosmos, Carnegie Science is an incubator for cutting-edge, interdisciplinary research.
      • Astronomy & Astrophysics
        • Back
        • Astronomy & Astrophysics
        • Astrophysical Theory
        • Cosmology
        • Distant Galaxies
        • Milky Way & Stellar Evolution
        • Planet Formation & Evolution
        • Solar System & Exoplanets
        • Telescope Instrumentation
        • Transient & Compact Objects
      • Earth Science
        • Back
        • Earth Science
        • Experimental Petrology
        • Geochemistry
        • Geophysics & Geodynamics
        • Mineralogy & Mineral Physics
      • Ecology
        • Back
        • Ecology
        • Atmospheric Science & Energy
        • Adaptation to Climate Change
        • Water Quality & Scarcity
      • Genetics & Developmental Biology
        • Back
        • Genetics & Developmental Biology
        • Adaptation to Climate Change
        • Developmental Biology & Human Health
        • Genomics
        • Model Organism Development
        • Nested Ecosystems
        • Symbiosis
      • Matter at Extreme States
        • Back
        • Matter at Extreme States
        • Extreme Environments
        • Extreme Materials
        • Mineralogy & Mineral Physics
      • Planetary Science
        • Back
        • Planetary Science
        • Astrobiology
        • Cosmochemistry
        • Mineralogy & Mineral Physics
        • Planet Formation & Evolution
        • Solar System & Exoplanets
      • Plant Science
        • Back
        • Plant Science
        • Adaptation to Climate Change
        • Nested Ecosystems
        • Photosynthesis
        • Symbiosis
    • Divisions
      • Back
      • Divisions
      • Biosphere Sciences & Engineering
        • Back
        • Biosphere Sciences & Engineering
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Path to Pasadena
      • Earth & Planets Laboratory
        • Back
        • Earth & Planets Laboratory
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
      • Observatories
        • Back
        • Observatories
        • About

          Contact Us

          Business Address
          5241 Broad Branch Rd. NW

          Washington , DC 20015
          United States place Map
          Call Us (202) 387-640
        • Research
        • Culture
        • Campus
    • Instrumentation
      • Back
      • Instrumentation
      • Our Telescopes
        • Back
        • Our Telescopes
        • Magellan Telescopes
        • Swope Telescope
        • du Pont Telescope
      • Observatories Machine Shop
      • EPL Research Facilities
      • EPL Machine Shop
      • Mass Spectrometry Facility
      • Advanced Imaging Facility
  • People
    • Back
    • People
      Observatory Staff

      Featured Staff Member

      Staff Member

      Staff Member

      Professional Title

      Learn More
      Observatory Staff

      Search For

    • Search All People
      • Back
      • Staff Scientists
      • Leadership
      • Biosphere Science & Engineering People
      • Earth & Planets Laboratory People
      • Observatories People
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Featured Staff Member

    Allan Spradling portait

    Dr. Allan Spradling - HHMI

    Staff Scientist, Emeritus Director

    Learn More
    Observatory Staff
    Dr. Allan Spradling
    Staff Scientist, Emeritus Director

    Allan Spradling and his team focus on the biology of reproduction, particularly oogenesis — the process of egg formation.

    Search For

    Search All Staff
  • Events
    • Back
    • Events
    • Search All Events
      • Back
      • Public Events
      • Biosphere Science & Engineering Events
      • Earth & Planets Laboratory Events
      • Observatories Events

    Upcoming Events

    Events

    Events

    A gray-true color Mercury next to a colorized Mercury that combines visible and near infrared light to highlight the differences in surface composition.
    Public Program

    Mercury beyond MESSENGER: Recent Progress from the Earth and Planets Laboratory

    Anne Pommier, Staff Scientist, EPL

    June 5

    6:30pm EDT

    Illustration of a black hole
    Public Program

    The Messy Eating Habits of Black Holes

    Dr. Anthony Piro

    May 7

    6:30pm PDT

    Artist rendition of supernova
    Public Program

    From Stellar Death to Cosmic Rebirth: 60 Years of Supernova Study

    Dr. David Vartanyan

    April 15

    6:30pm PDT

  • News
    • Back
    • News
    • Search All News
      • Back
      • Biosphere Science & Engineering News
      • Earth & Planets Laboratory News
      • Observatories News
      • Carnegie Science News
    News

    Recent News

    News

    Read all News
    John Mulchaey 2025 NLS Talk - Wide
    Breaking News
    April 09, 2025

    Hubble’s Universe Today: John Mulchaey Kicks Off the 2025 Neighborhood Lecture Series

    John M Points to Galaxy.jpg
    Breaking News
    April 09, 2025

    10 Things We Learned About the Universe from John Mulchaey’s Neighborhood Lecture

    Artist's concept of a stellar flare from Proxima Centauri. Credit: NSF/AUI/NSF NRAO/S. Dagnello.
    Breaking News
    March 27, 2025

    Small star, mighty flares: A new view of Proxima Centauri

  • Donate
    • Back
    • Donate
      - ,

    • Make a Donation
      • Back
      • Support Scientific Research
      • The Impact of Your Gift
      • Planned Giving
    Jo Ann Eder

    I feel passionately about the power of nonprofits to bolster healthy communities.

    - Jo Ann Eder , Astronomer and Alumna

    Header Text

    Postdoctoral alumna Jo Ann Eder is committed to making the world a better place by supporting organizations, like Carnegie, that create and foster STEM learning opportunities for all. 

    Learn more arrow_forward
  • Home

Abstract
Moons orbiting exoplanets ("exomoons") may hold clues about planet formation, migration, and habitability. In this work, we investigate the plausibility of exomoons orbiting the temperate (T eq = 294 K) giant (R = 9.2 R circle plus) planet HIP 41378 f, which has been shown to have a low apparent bulk density of 0.09 g cm-3 and a flat near-infrared transmission spectrum, hinting that it may possess circumplanetary rings. Given this planet's long orbital period (P approximate to 1.5 yr), it has been suggested that it may also host a large exomoon. Here, we analyze the orbital stability of a hypothetical exomoon with a satellite-to-planet mass ratio of 0.0123 orbiting HIP 41378 f. Combining a new software package, astroQTpy, with REBOUND and EqTide, we conduct a series of N-body and tidal migration simulations, demonstrating that satellites up to this size are largely stable against dynamical escape and collisions. We simulate the expected transit signal from this hypothetical exomoon and show that current transit observations likely cannot constrain the presence of exomoons orbiting HIP 41378 f, though future observations may be capable of detecting exomoons in other systems. Finally, we model the combined transmission spectrum of HIP 41378 f and a hypothetical moon with a low-metallicity atmosphere and show that the total effective spectrum would be contaminated at the similar to 10 ppm level. Our work not only demonstrates the feasibility of exomoons orbiting HIP 41378 f but also shows that large exomoons may be a source of uncertainty in future high-precision measurements of exoplanet systems.
open_in_new
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.
open_in_new
Abstract
In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid-membranes called pyrenoid tubules, proposed to deliver CO2. In the model alga Chlamydomonas reinhardtii (Chlamydomonas), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules and heterologous expression of BST4 in Arabidopsis thaliana did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutant did not show impaired growth at air level CO2. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we show that bst4 displays a transiently lower thylakoid lumenal pH during dark to light transition compared to control strains. When acclimated to high light, bst4 had sustained higher NPQ and elevated levels of light-induced H2O2 production. We conclude that BST4 is not a tethering protein, but rather is an ion channel involved in lumenal pH regulation possibly by mediating bicarbonate transport across the pyrenoid tubules.
open_in_new
Abstract
Adaptation to new environments can be impeded if beneficial phenotype combinations cannot coexist due to genetic constraints. To understand how such constraints may hinder plant adaptation to future climates, we compiled a comprehensive database of traits of Arabidopsis thaliana and estimated phenotypic natural selection in common gardens in its native distribution with rainfall limitation treatments. We found a natural selection conflict in drought environments as two drought-adaptive strategies, escape and avoidance, are mutually exclusive in A. thaliana. Traits underlying such strategies, such as flowering time, growth rate, and water use efficiency, are genetically correlated, and we identify novel loci involved in such correlation experiencing antagonistic natural selection. This empirical evidence shows that these adaptive strategies in natural populations are mutually exclusive due to strong genetic correlations amongst traits that limit the possible combinations of phenotypes. Given projections that future climates will become hotter and drier in many temperate regions, we expect an increasing conflict in natural selection among adaptive traits that could slow down or prevent adaptation. Our study underscores the importance of accounting for evolutionary genetic constraints when predicting how species may respond to a changing climate.
open_in_new
Abstract
Proposals for achieving net-zero emissions by 2050 include scaling-up electrolytic hydrogen production, however, this poses technical, economic, and environmental challenges. One such challenge is for policymakers to ensure a sustainable future for the environment including freshwater and land resources while facilitating low-carbon hydrogen production using renewable wind and solar energy. We establish a country-by-country reference scenario for hydrogen demand in 2050 and compare it with land and water availability. Our analysis highlights countries that will be constrained by domestic natural resources to achieve electrolytic hydrogen self-sufficiency in a net-zero target. Depending on land allocation for the installation of solar panels or wind turbines, less than 50% of hydrogen demand in 2050 could be met through a local production without land or water scarcity. Our findings identify potential importers and exporters of hydrogen or, conversely, exporters or importers of industries that would rely on electrolytic hydrogen. The abundance of land and water resources in Southern and Central-East Africa, West Africa, South America, Canada, and Australia make these countries potential leaders in hydrogen export.
open_in_new
A view of the outside of the OSIRIS-REx sample collector. Sample material from asteroid Bennu can be seen on the middle right. Scientists have found evidence of both carbon and water in initial analysis of this material. The bulk of the sample is located inside. Photo: NASA/Erika Blumenfeld & Joseph Aebersold
November 30, 2023
Feature Story

VIDEO: Analyzing an asteroid in the new golden age of sample return

Guessing a pumpkin's weight at BBR
November 29, 2023
Feature Story

Broad Branch Road campus shines under fall foliage

Weinberger Leaning in Shadow
November 29, 2023
Q&A

Beyond the skyline: A chat with Alycia Weinberger on science and community

Abstract
Isotopic studies of meteorites suggest that planetesimals were formed as two distinct populations: noncarbonaceous (NC) and carbonaceous (CC) reservoirs. A recent model explains this dichotomy by considering planetesimal formation at the snowline during its migration in the protoplanetary disk, suggesting that NC planetesimals were formed during the outward migration and CC planetesimals were formed during the inward migration. This model has been suggested to contradict meteorite observations because planetesimals formed at the snowline are expected to be rich in H2O and, therefore, develop more oxidizing environments than those inferred from NC iron meteorites. However, if the accreted ice sublimates into vapor without transitioning into a liquid state, the planetesimals may lose most water without being oxidized because reactions between vapor and solids are negligibly slow at temperatures relevant to direct ice sublimation. Here, we investigate the transport of vapor inside a planetesimal and suggest that the pore pressure would have been sufficiently low for direct ice sublimation if (1) the planetesimals were formed during the outward snowline migration (such that they lay inside the snowline after formation and had surfaces permeable to water vapor), (2) these planetesimals were formed by dust-aggregate boulders through "streaming instabilities" instead of being formed directly by submicrometer dust grains, and (3) the boulders were between a few centimeters to similar to 10 m in size. With these results, the snowline model for NC/CC planetesimal formation may be reconciled with the observations of iron meteorite oxidation states.
open_in_new
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited -oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
open_in_new

Pagination

  • Previous page chevron_left
  • …
  • Page 157
  • Page 158
  • Page 159
  • Page 160
  • Current page 161
  • Page 162
  • Page 163
  • Page 164
  • Page 165
  • …
  • Next page chevron_right
Subscribe to

Get the latest

Subscribe to our newsletters.

Privacy Policy
Home
  • Instagram instagram
  • Twitter twitter
  • Youtube youtube
  • Facebook facebook

Science

  • Biosphere Sciences & Engineering
  • Earth & Planets Laboratory
  • Observatories
  • Research Areas
  • Strategic Initiatives

Legal

  • Financial Statements
  • Conflict of Interest Policy
  • Privacy Policy

Careers

  • Working at Carnegie
  • Scientific and Technical Jobs
  • Postdoctoral Program
  • Administrative & Support Jobs
  • Carnegie Connect (For Employees)

Contact Us

  • Contact Administration
  • Media Contacts

Business Address

5241 Broad Branch Rd. NW

Washington, DC 20015

place Map

© Copyright Carnegie Science 2025