Molybdenum isotope fractionation between Mo4+ and Mo6+ in silicate liquid and metallic Mo

Hin, Remco C.; Burnham, Antony D.; Gianolio, Diego; Walter, Michael J.; Elliott, Tim
2019
CHEMICAL GEOLOGY
DOI
10.1016/j.chemgeo.2018.11.014
Previous work has shown that Mo isotopes measurably fractionate between metal and silicate liquids, even at temperatures appropriate for core formation. However, the effect of variations in the structural environment of Mo in the silicate liquid, especially as a function of valence state, on Mo isotope fractionation remained poorly explored. We have investigated the role of valence state in metal-silicate experiments in a gas-controlled furnace at 1400 degrees C and at oxygen fugacities between 10(-12.7) and 10(-9.9), i.e. between three and 0.2 log units below the iron-wustite buffer. Two sets of experiments were performed, both with a silicate liquid in the CaO-Al2O3-SiO2 system. One set used molybdenum metal wire loops as the metal source, the other liquid gold alloyed with 2.5 wt % Mo contained in silica glass tubes. X-ray absorption near-edge spectroscopy analysis indicates that Mo6+/Sigma Mo in the silicate glasses varies between 0.24 and 0.77 at oxygen fugacities of 10-(12.0) and 10(-9.9) in the wire loop experiments and between 0.15 and 0.48 at 10(-11.4) and 10(-9.9) in the experiments with Au-Mo alloys. Double spiked analysis of Mo isotope compositions furthermore shows that Mo isotope fractionation between metal and silicate is a linear function of Mo6+/Sigma Mo in the silicate glasses, with a difference of 0.51 parts per thousand in Mo-98/Mo-95 between purely Mo4+-bearing and purely Mo6+-bearing silicate liquid. The former is octahedrally and the latter tetrahedrally coordinated. Our study implies that previous experimental work contained a mixture of Mo4+ and Mo6+ species in the silicate liquid. Our refined parameterisation for Mo isotope fractionation between metal and silicate can be described as