Wind-reprocessed transients from stellar-mass black hole Tidal Disruption Events
2023
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
DOI
10.1093/mnras/stad2239
Tidal disruptions of stars by stellar-mass black holes are expected to occur frequently in dense star clusters. Building upon previous studies that performed hydrodynamic simulations of these encounters, we explore the formation and long-term evolution of the thick, super-Eddington accretion disks formed. We build a disk model that includes fallback of material from the tidal disruption, accretion onto the black hole, and disk mass losses through winds launched in association with the super-Eddington flow. We demonstrate that bright transients are expected when radiation from the central engine powered by accretion onto the black hole is reprocessed at large radii by the optically-thick disk wind. By combining hydrodynamic simulations of these disruption events with our disk + wind model, we compute light curves of these wind-reprocessed transients for a wide range of stellar masses and encounter penetration depths. We find typical peak bolometric luminosities of roughly 10( 41) -10 (44 )erg s (-1 )(depending mostly on accretion physics parameters) and temperatures of roughly 10( 5) -10( 6) K, suggesting peak emission in the ultraviolet/blue bands. We predict all-sky surveys such as the Vera Rubin Observatory and ULTRASAT will detect up to thousands of these events per year in dense star clusters out to distances of several Gpc.