Structure vs. composition: A solid-state H-1 and Si-29 NMR study of quenched glasses along the Na2O-SiO2-H2O join

Cody, GD; Mysen, BO; Lee, SK
2005
GEOCHIMICA ET COSMOCHIMICA ACTA
DOI
10.1016/j.gca.2004.11.012
A suite of six hydrous (7 wt.% H2O) sodium silicate glasses spanning sodium octasilicate to sodium disilicate in composition were analyzed using Si-29 single pulse (SP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, H-1-Si-29 cross polarization (CP) MAS NMR, and fast MAS H-1-NMR. From the Si-29 SPMAS data it is observed that at low sodium compositions dissolved water significantly depolymerizes the silicate network. At higher sodium contents, however, dissolved H2O does not affect a significant increase in depolymerization over that predicted based on the Na/Si ratio alone. The fast MAS H-1-NMR data reveal considerable complexity in proton environments in each of the glasses studied. The fast MAS 1H-NMR spectra of the highest sodium concentration glasses do not exhibit evidence of signficantly greater fractions of dissolved water as molecular H2O than the lower sodium concentration glasses requiring that the decrease in polymerization at high sodium contents involves a change in sodium solution mechanism. Variable contact time H-1-Si-29 cross polarization (CP) MAS NMR data reveal an increase in the rotating frame spin lattice relaxation rate constant (T-1 rho*) for various Q(n) species with increasing sodium content that correlates with a reduction in the average H-1-Si-29 coupling strength. At the highest sodium concentration, however, T-1 rho* drops significantly, consistent with a change in the Na2O solution mechanism. Copyright (c) 2005 Elsevier Ltd.